Mots-clés : efficient algorithm.
@article{SM_2018_209_1_a4,
author = {V. E. Kruglov and D. S. Malyshev and O. V. Pochinka},
title = {A~multicolour graph as a~complete topological invariant for $\Omega$-stable flows without periodic trajectories on surfaces},
journal = {Sbornik. Mathematics},
pages = {96--121},
year = {2018},
volume = {209},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_1_a4/}
}
TY - JOUR AU - V. E. Kruglov AU - D. S. Malyshev AU - O. V. Pochinka TI - A multicolour graph as a complete topological invariant for $\Omega$-stable flows without periodic trajectories on surfaces JO - Sbornik. Mathematics PY - 2018 SP - 96 EP - 121 VL - 209 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_2018_209_1_a4/ LA - en ID - SM_2018_209_1_a4 ER -
%0 Journal Article %A V. E. Kruglov %A D. S. Malyshev %A O. V. Pochinka %T A multicolour graph as a complete topological invariant for $\Omega$-stable flows without periodic trajectories on surfaces %J Sbornik. Mathematics %D 2018 %P 96-121 %V 209 %N 1 %U http://geodesic.mathdoc.fr/item/SM_2018_209_1_a4/ %G en %F SM_2018_209_1_a4
V. E. Kruglov; D. S. Malyshev; O. V. Pochinka. A multicolour graph as a complete topological invariant for $\Omega$-stable flows without periodic trajectories on surfaces. Sbornik. Mathematics, Tome 209 (2018) no. 1, pp. 96-121. http://geodesic.mathdoc.fr/item/SM_2018_209_1_a4/
[1] V. E. Alekseev, V. A. Talanov, Grafy i algoritmy. Struktury dannykh. Modeli vychislenii, Izd-vo «Internet-universitet informatsionnykh tekhnologii», M., 2006, 320 pp.
[2] A. Andronov, L. Pontrjagin, “Systèmes grossiers”, C. R. Acad. Sci. URSS (2), 14 (1937), 247–250 | Zbl
[3] A. Cobham, “The intrinsic computational difficulty of functions”, Logic, methodology, and philosophy of science, Proceedings of the 1964 international congress, North-Holland, Amsterdam, 1965, 24–30 | MR | Zbl
[4] V. Z. Grines, S. H. Kapkaeva, O. V. Pochinka, “A three-colour graph as a complete topological invariant for gradient-like diffeomorphisms of surfaces”, Sb. Math., 205:10 (2014), 1387–1412 | DOI | DOI | MR | Zbl
[5] V. Z. Grines, T. V. Medvedev, O. V. Pochinka, Dynamical systems on $2$- and $3$-manifolds, Dev. Math., 46, Springer, Cham, 2016, xxvi+295 pp. | DOI | MR
[6] M. R. Garey, D. S. Johnson, Computers and intractability. A guide to the theory of NP-completeness, A Series of Books in the Mathematical Sciences, W. H. Freeman and Co., San Francisco, CA, 1979, x+338 pp. | MR | MR | Zbl | Zbl
[7] D. König, “Grafok es matrixok”, Mat. Fiz. Lapok, 38 (1931), 116–119 | Zbl
[8] E. Leontovič, A. G. Mayer, “Sur les trajectoires qui déterminent la structure qualitative de la division de la sphère en trajectoires”, C. R. Acad. Sci. URSS (2), 14 (1937), 251–254 | Zbl
[9] E. A. Leontovich, A. G. Maier, “O skheme, opredelyayuschei topologicheskuyu strukturu razbieniya na traektorii”, Dokl. AN SSSR, 103:4 (1955), 557–560 | MR | Zbl
[10] A. G. Maier, “Grubye preobrazovaniya okruzhnosti”, Uch. zap. GGU, 12, GGU, Gorkii, 1939, 215–229
[11] G. Miller, “Isomorphism testing for graphs of bounded genus”, STOC' 80 Proceedings of the 12th annual ACM symposium on theory of computing, Los Angeles, CA, 1980, ACM, New York, 1980, 225–235 | DOI
[12] D. Neumann, T. O'Brien, “Global structure of continuous flows on 2-manifolds”, J. Differential Equations, 22:1 (1976), 89–110 | DOI | MR | Zbl
[13] A. A. Oshemkov, V. V. Sharko, “Classification of Morse–Smale flows on two-dimensional manifolds”, Sb. Math., 189:8 (1998), 1205–1250 | DOI | DOI | MR | Zbl
[14] J. Palis, Jr., W. de Melo, Geometric theory of dynamical systems. An introduction, Springer-Verlag, New York–Berlin, 1982, xii+198 pp. | MR | MR | Zbl
[15] M. M. Peixoto, “On the classification of flows on 2-manifolds”, Dynamical systems (Univ. Bahia, Salvador, 1971), Academic Press, New York, 1973, 389–419 | MR | Zbl
[16] C. Pugh, M. Shub, “The $\Omega$-stability theorem for flows”, Invent. Math., 11:2 (1970), 150–158 | DOI | MR | Zbl
[17] C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995, xii+468 pp. | MR | Zbl