Construction of diffusions on current groups
Sbornik. Mathematics, Tome 209 (2018) no. 1, pp. 71-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the current group $C(M,G)$ of continuous maps from a Riemannian manifold $M$ to a Lie group $G$ we construct diffusion processes generated by second-order differential operators with variable coefficients. Bibliography: 25 titles.
Keywords: current groups, infinite-dimensional stochastic analysis, Brownian motion.
Mots-clés : diffusion
@article{SM_2018_209_1_a3,
     author = {A. A. Kalinichenko},
     title = {Construction of diffusions on current groups},
     journal = {Sbornik. Mathematics},
     pages = {71--95},
     year = {2018},
     volume = {209},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_1_a3/}
}
TY  - JOUR
AU  - A. A. Kalinichenko
TI  - Construction of diffusions on current groups
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 71
EP  - 95
VL  - 209
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_1_a3/
LA  - en
ID  - SM_2018_209_1_a3
ER  - 
%0 Journal Article
%A A. A. Kalinichenko
%T Construction of diffusions on current groups
%J Sbornik. Mathematics
%D 2018
%P 71-95
%V 209
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2018_209_1_a3/
%G en
%F SM_2018_209_1_a3
A. A. Kalinichenko. Construction of diffusions on current groups. Sbornik. Mathematics, Tome 209 (2018) no. 1, pp. 71-95. http://geodesic.mathdoc.fr/item/SM_2018_209_1_a3/

[1] M.-P. Malliavin, P. Malliavin, “Integration on loop groups. I. Quasi invariant measures”, J. Funct. Anal., 93:1 (1990), 207–237 | DOI | MR | Zbl

[2] J. B. Epperson, T. M. Lohrenz, “Brownian motion and the heat semigroup on the path space of a compact Lie group”, Pacific J. Math., 161:2 (1993), 233–253 | DOI | MR | Zbl

[3] P. Malliavin, “Hypoellipticity in infinite dimensions”, Diffusion processes and related problems in analysis (Evanston, IL, 1989), v. 1, Progr. Probab., 22, Birkhäuser Boston, Boston, MA, 1990, 17–31 | MR | Zbl

[4] Y. Inahama, “Convergence of finite dimensional distributions of heat kernel measures on loop groups”, J. Funct. Anal., 198:2 (2003), 311–340 | DOI | MR | Zbl

[5] R. Léandre, “Brownian surfaces with boundary and Deligne cohomology”, Rep. Math. Phys., 52:3 (2003), 353–362 | DOI | MR | Zbl

[6] M. Cecil, B. K. Driver, “Heat kernel measure on loop and path groups”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 11:2 (2008), 135–156 | DOI | MR | Zbl

[7] B. K. Driver, “Integration by parts and quasi-invariance for heat kernel measures on loop groups”, J. Funct. Anal., 149:2 (1997), 470–547 | DOI | MR | Zbl

[8] Z. Brzeźniak, A. Carroll, “Approximations of the Wong–Zakai type for stochastic differential equations in M-type 2 Banach spaces with applications to loop spaces”, Séminaire de Probabilités XXXVII, Lecture Notes in Math., 1832, Springer, Berlin, 2003, 251–289 | DOI | MR | Zbl

[9] Y. Inahama, H. Kawabi, “Large deviations for heat kernel measures on loop spaces via rough paths”, J. London Math. Soc. (2), 73:3 (2006), 797–816 | DOI | MR | Zbl

[10] M. Talagrand, Upper and lower bounds for stochastic processes. Modern methods and classical problems, Ergeb. Math. Grenzgeb. (3), 60, Springer, Heidelberg, 2014, xvi+626 pp. | DOI | MR | Zbl

[11] B. K. Driver, M. Röckner, “Construction of diffusions on path and loop spaces of compact Riemannian manifolds”, C. R. Acad. Sci. Paris Sér. I Math., 315:5 (1992), 603–608 | MR | Zbl

[12] J. R. Norris, “Twisted sheets”, J. Funct. Anal., 132:2 (1995), 273–334 | DOI | MR | Zbl

[13] J. B. Epperson, T. Lohrenz, “Diffusions on finite-energy loop spaces”, Soochow J. Math, 20:1 (1994), 113–136 | MR | Zbl

[14] O. Kallenberg, Foundations of modern probability, Probab. Appl. (N. Y.), 2nd ed., Springer, New York, 2002, xx+638 pp. | MR | Zbl

[15] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia Math. Appl., 152, 2nd ed., Cambridge Univ. Press, Cambridge, 2014, xviii+493 pp. | DOI | MR | Zbl

[16] B. I. Mamporia, “Wiener processes and stochastic integrals on a Banach space”, Probab. Math. Statist., 7:1 (1986), 59–75 | MR | Zbl

[17] G. R. Shorack, J. A. Wellner, Empirical processes with applications to statistics, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., John Wiley Sons, Inc., New York, 1986, xxxviii+938 pp. | MR | Zbl

[18] J. van Neerven, M. Veraar, L. Weis, “Stochastic integration in Banach spaces – a survey”, Stochastic analysis: a series of lectures, Progr. Probab., 68, Birkhäuser/Springer, Basel, 2015, 297–332 | DOI | MR | Zbl

[19] E. Dettweiler, “Banach space valued processes with independent increments and stochastic integration”, Probability in Banach spaces IV (Oberwolfach, 1982), Lecture Notes in Math., 990, Springer, Berlin–New York, 1983, 54–83 | DOI | MR | Zbl

[20] A. A. Kalinichenko, “An approach to stochastic integration in general separable Banach spaces”, Potential Anal. (Submitted)

[21] M. Hakim-Dowek, D. Lépingle, “L'exponentielle stochastique des groupes de Lie”, Séminaire de Probabilités XX (Strasbourg, 1984/85), Lecture Notes in Math., 1204, Springer, Berlin, 1986, 352–374 | DOI | MR | Zbl

[22] L. Gross, “Analysis on loop groups”, Stochastic analysis and applications in physics (Funchal, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 449, Kluwer Acad. Publ., Dordrecht, 1994, 99–118 | DOI | MR

[23] J. L. Kelley, General topology, D. Van Nostrand Company, Inc., Toronto–New York–London, 1955, xiv+298 pp. | MR | MR | Zbl | Zbl

[24] M. Ondreját, “Integral representations of cylindrical local martingales in every separable Banach space”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 10:3 (2007), 365–379 | DOI | MR | Zbl

[25] N. Ikeda, Sh. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Math. Library, 24, North-Holland Publishing Co., Amsterdam–New York; Kodansha, Ltd., Tokyo, 1981, xiv+464 pp. | MR | MR | Zbl | Zbl