Distribution of facets of higher-dimensional Klein polyhedra
Sbornik. Mathematics, Tome 209 (2018) no. 1, pp. 56-70

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider facets of Klein polyhedra of a given integer-linear type $\mathscr T$ in a certain lattice. Let $E_\mathscr T(N,s)$ be the typical number of facets, averaged over all integral $s$-dimensional lattices with determinant $N$. Assume that the interior of any facet of type $\mathscr T$ contains at least one point of the corresponding lattice. We prove that $$ E_\mathscr T(N,s)=C_\mathscr T \ln^{s-1}N+O_\mathscr T (\ln^{s-2} N \cdot \ln\ln N) \quad\text{as } N \to \infty, $$ where $C_\mathscr T$ is a positive constant depending only on $\mathscr T$. Bibliography: 28 titles.
Keywords: lattice, Klein polyhedron, multidimensional continued fraction.
@article{SM_2018_209_1_a2,
     author = {A. A. Illarionov},
     title = {Distribution of facets of higher-dimensional {Klein} polyhedra},
     journal = {Sbornik. Mathematics},
     pages = {56--70},
     publisher = {mathdoc},
     volume = {209},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_1_a2/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - Distribution of facets of higher-dimensional Klein polyhedra
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 56
EP  - 70
VL  - 209
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_1_a2/
LA  - en
ID  - SM_2018_209_1_a2
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T Distribution of facets of higher-dimensional Klein polyhedra
%J Sbornik. Mathematics
%D 2018
%P 56-70
%V 209
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_1_a2/
%G en
%F SM_2018_209_1_a2
A. A. Illarionov. Distribution of facets of higher-dimensional Klein polyhedra. Sbornik. Mathematics, Tome 209 (2018) no. 1, pp. 56-70. http://geodesic.mathdoc.fr/item/SM_2018_209_1_a2/