Distribution of facets of higher-dimensional Klein polyhedra
Sbornik. Mathematics, Tome 209 (2018) no. 1, pp. 56-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider facets of Klein polyhedra of a given integer-linear type $\mathscr T$ in a certain lattice. Let $E_\mathscr T(N,s)$ be the typical number of facets, averaged over all integral $s$-dimensional lattices with determinant $N$. Assume that the interior of any facet of type $\mathscr T$ contains at least one point of the corresponding lattice. We prove that $$ E_\mathscr T(N,s)=C_\mathscr T \ln^{s-1}N+O_\mathscr T (\ln^{s-2} N \cdot \ln\ln N) \quad\text{as } N \to \infty, $$ where $C_\mathscr T$ is a positive constant depending only on $\mathscr T$. Bibliography: 28 titles.
Keywords: lattice, Klein polyhedron, multidimensional continued fraction.
@article{SM_2018_209_1_a2,
     author = {A. A. Illarionov},
     title = {Distribution of facets of higher-dimensional {Klein} polyhedra},
     journal = {Sbornik. Mathematics},
     pages = {56--70},
     year = {2018},
     volume = {209},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_1_a2/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - Distribution of facets of higher-dimensional Klein polyhedra
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 56
EP  - 70
VL  - 209
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_1_a2/
LA  - en
ID  - SM_2018_209_1_a2
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T Distribution of facets of higher-dimensional Klein polyhedra
%J Sbornik. Mathematics
%D 2018
%P 56-70
%V 209
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2018_209_1_a2/
%G en
%F SM_2018_209_1_a2
A. A. Illarionov. Distribution of facets of higher-dimensional Klein polyhedra. Sbornik. Mathematics, Tome 209 (2018) no. 1, pp. 56-70. http://geodesic.mathdoc.fr/item/SM_2018_209_1_a2/

[1] F. Klein, “Über eine geometrische Auffassung der gewöhnlichen Kettenbruchentwickelung”, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 3 (1895), 357–359 | Zbl

[2] V. I. Arnold, “$A$-graded algebras and continued fractions”, Comm. Pure Appl. Math., 42:7 (1989), 993–1000 | DOI | MR | Zbl

[3] V. I. Arnold, “Higher dimensional continued fractions”, Regul. Chaotic Dyn., 3:3 (1998), 10–17 | DOI | MR | Zbl

[4] V. I. Arnold, “Preface”, Pseudoperiodic topology, Amer. Math. Soc. Transl. Ser. 2, 197, Adv. Math. Sci., 46, Amer. Math. Soc., Providence, RI, 1999, ix–xii | DOI | MR | Zbl

[5] V. I. Arnold, Arnold's problems, Springer-Verlag, Berlin; PHASIS, 2004, xvi+639 pp. | DOI | MR | MR | Zbl | Zbl

[6] H. Tsuchihashi, “Higher dimensional analogues of periodic continued fractions and cusp singularities”, Tohoku Math. J. (2), 35:4 (1983), 607–639 | DOI | MR | Zbl

[7] G. Lachaud, “Polyèdre d'Arnol'd et voile d'un cône simplicial: analogues du théorème de Lagrange”, C. R. Acad. Sci. Paris Sér. I Math., 317:8 (1993), 711–716 | MR | Zbl

[8] G. Lachaud, “Sails and Klein polyhedra”, Number theory (Tiruchirapalli, 1996), Contemp. Math., 210, Amer. Math. Soc., Providence, RI, 1998, 373–385 | DOI | MR | Zbl

[9] E. Korkina, “La périodicité des fractions continues multidimensionnelles”, C. R. Acad. Sci. Paris Sér. I Math., 319:8 (1994), 777–780 | MR | Zbl

[10] E. I. Korkina, “Two-dimensional continued fractions. The simplest examples”, Proc. Steklov Inst. Math., 209 (1995), 124–144 | MR | Zbl

[11] J.-O. Moussafir, “Sails and Hilbert bases”, Funct. Anal. Appl., 34:2 (2000), 114–118 | DOI | DOI | MR | Zbl

[12] O. N. German, “Sails and norm minima of lattices”, Sb. Math., 196:3 (2005), 337–365 | DOI | DOI | MR | Zbl

[13] O. N. German, E. L. Lakshtanov, “On a multidimensional generalization of Lagrange's theorem on continued fractions”, Izv. Math., 72:1 (2008), 47–61 | DOI | DOI | MR | Zbl

[14] O. N. Karpenkov, “Constructing multidimensional periodic continued fractions in the sense of Klein”, Math. Comp., 78:267 (2009), 1687–1711 | DOI | MR | Zbl

[15] A. V. Bykovskaya, “A multidimensional generalization of Lagrange's theorem on continued fractions”, Math. Notes, 92:3 (2012), 312–326 | DOI | DOI | MR | Zbl

[16] I. A. Makarov, “Interior Klein polyhedra”, Math. Notes, 95:6 (2014), 795–805 | DOI | DOI | MR | Zbl

[17] O. Karpenkov, Geometry of continued fractions, Algorithms Comput. Math., 26, Springer, Heidelberg, 2013, xviii+405 pp. | DOI | MR | Zbl

[18] M. L. Kontsevich, Yu. M. Suhov, “Statistics of Klein polyhedra and multidimensional continued fractions”, Pseudoperiodic topology, Amer. Math. Soc. Transl. Ser. 2, 197, Amer. Math. Soc., Providence, RI, 1999, 9–27 | DOI | MR | Zbl

[19] J.-O. Moussafir, Voiles et polyèdres de Klein. Géométrie, algorithmes et statistiques, Doc. Sci. Thése, Univ. Paris IX–Dauphine, Paris, 2000

[20] O. N. Karpenkov, “On an invariant Möbius measure and the Gauss–Kuzmin face distribution”, Proc. Steklov Inst. Math., 258:1 (2007), 74–86 | DOI | MR | Zbl

[21] A. A. Illarionov, D. A. Slinkin, “O kolichestve vershin mnogogrannikov Kleina tselochislennykh reshetok v srednem”, Dalnevost. matem. zhurn., 11:1 (2011), 48–55 | MR | Zbl

[22] A. A. Illarionov, “On the statistical properties of Klein polyhedra in three-dimensional lattices”, Sb. Math., 204:6 (2013), 801–823 | DOI | DOI | MR | Zbl

[23] A. A. Illarionov, “Some properties of three-dimensional Klein polyhedra”, Sb. Math., 206:4 (2015), 510–539 | DOI | DOI | MR | Zbl

[24] A. A. Illarionov, “O raspredelenii tselochislennykh dlin reber poliedrov Kleina”, Dalnevost. matem. zhurn., 15:2 (2015), 214–221 | MR | Zbl

[25] A. A. Illarionov, “On the asymptotic distribution of integer matrices”, Mosc. J. Comb. Number Theory, 1:4 (2011), 13–57 | MR

[26] H. Heilbronn, “On the average length of a class of finite continued fractions”, Number theory and analysis, Papers in honor of E. Landau, Plenum, New York, 1969, 87–96 | DOI | MR | Zbl

[27] A. A. Illarionov, “A multidimensional generalization of Heilbronn's theorem on the average length of a finite continued fraction”, Sb. Math., 205:3 (2014), 419–431 | DOI | DOI | MR | Zbl

[28] A. A. Illarionov, “The average number of relative minima of three-dimensional integer lattices of a given determinant”, Izv. Math., 76:3 (2012), 535–562 | DOI | DOI | MR | Zbl