Distribution of facets of higher-dimensional Klein polyhedra
Sbornik. Mathematics, Tome 209 (2018) no. 1, pp. 56-70
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider facets of Klein polyhedra of a given integer-linear type $\mathscr T$ in a certain lattice. Let $E_\mathscr T(N,s)$ be the typical number of facets, averaged over all integral $s$-dimensional lattices with determinant $N$. Assume that the interior of any facet of type $\mathscr T$ contains at least one point of the corresponding lattice. We prove that
$$
E_\mathscr T(N,s)=C_\mathscr T \ln^{s-1}N+O_\mathscr T (\ln^{s-2} N \cdot \ln\ln N)
\quad\text{as } N \to \infty,
$$
where $C_\mathscr T$ is a positive constant depending only on $\mathscr T$.
Bibliography: 28 titles.
Keywords:
lattice, Klein polyhedron, multidimensional continued fraction.
@article{SM_2018_209_1_a2,
author = {A. A. Illarionov},
title = {Distribution of facets of higher-dimensional {Klein} polyhedra},
journal = {Sbornik. Mathematics},
pages = {56--70},
publisher = {mathdoc},
volume = {209},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_1_a2/}
}
A. A. Illarionov. Distribution of facets of higher-dimensional Klein polyhedra. Sbornik. Mathematics, Tome 209 (2018) no. 1, pp. 56-70. http://geodesic.mathdoc.fr/item/SM_2018_209_1_a2/