Spectral synthesis on the group of conformal automorphisms of the unit disc
Sbornik. Mathematics, Tome 209 (2018) no. 1, pp. 1-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a group $G$ of conformal automorphisms of the unit disc $\mathbb{D}$, the problem of spectral synthesis is solved for subspaces $\mathscr{U}\subset \mathscr{E}(G)$ that are invariant under right $G$-shifts and conjugations by elements of the subgroup $\operatorname{SO}(2)$. A new theorem on spectral synthesis for subspaces of $\mathscr{E}(\mathbb{D})$ that are invariant under weighted conformal shifts is an intermediate result. Bibliography: 35 titles.
Keywords: spectral synthesis, group of conformal automorphisms, invariant subspace.
@article{SM_2018_209_1_a0,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {Spectral synthesis on the group of conformal automorphisms of the unit disc},
     journal = {Sbornik. Mathematics},
     pages = {1--34},
     year = {2018},
     volume = {209},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_1_a0/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - Spectral synthesis on the group of conformal automorphisms of the unit disc
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1
EP  - 34
VL  - 209
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_1_a0/
LA  - en
ID  - SM_2018_209_1_a0
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T Spectral synthesis on the group of conformal automorphisms of the unit disc
%J Sbornik. Mathematics
%D 2018
%P 1-34
%V 209
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2018_209_1_a0/
%G en
%F SM_2018_209_1_a0
V. V. Volchkov; Vit. V. Volchkov. Spectral synthesis on the group of conformal automorphisms of the unit disc. Sbornik. Mathematics, Tome 209 (2018) no. 1, pp. 1-34. http://geodesic.mathdoc.fr/item/SM_2018_209_1_a0/

[1] S. Helgason, Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Pure Appl. Math., 113, Academic Press, Inc., Orlando, FL, 1984, xix+654 pp. | MR | MR | Zbl

[2] C. A. Berenstein, D. C. Struppa, “Complex analysis and convolution equations”, Several complex variables. V. Complex analysis in partial differential equations and mathematical physics, Encyclopaedia Math. Sci., 54, Springer, Berlin, 1993, 1–108 | DOI | MR | Zbl

[3] V. V. Volchkov, Integral geometry and convolution equations, Kluwer Acad. Publ., Dordrecht, 2003, xii+454 pp. | DOI | MR | Zbl

[4] V. V. Volchkov, Vit. V. Volchkov, Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group, Springer Monogr. Math., Springer-Verlag London, Ltd., London, 2009, xii+671 pp. | DOI | MR | Zbl

[5] V. V. Volchkov, Vit. V. Volchkov, Offbeat integral geometry on symmetric spaces, Birkhäuser/Springer Basel AG, Basel, 2013, x+592 pp. | DOI | MR | Zbl

[6] L. Schwartz, “Théorie générale des fonctions moyenne-périodiques”, Ann. of Math. (2), 48:4 (1947), 857–929 | DOI | MR | Zbl

[7] B. Malgrange, “Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution”, Ann. Inst. Fourier (Grenoble), 6 (1956), 271–355 | DOI | MR | Zbl

[8] L. Brown, B. M. Schreiber, B. A. Taylor, “Spectral synthesis and the Pompeiu problem”, Ann. Inst. Fourier (Grenoble), 23:3 (1973), 125–154 | DOI | MR | Zbl

[9] D. I. Gurevich, “Counterexamples to a problem of L. Schwartz”, Funct. Anal. Appl., 9:2 (1975), 116–120 | DOI | MR | Zbl

[10] C. A. Berenstein, B. A. Taylor, “Interpolation problems in $\mathbf{C}^n$ with applications to harmonic analysis”, J. Analyse Math., 38 (1980), 188–254 | DOI | MR | Zbl

[11] S. Helgason, Differential geometry and symmetric spaces, Pure Appl. Math., 12, Academic Press, New York–London, 1962, xiv+486 pp. | MR | Zbl | Zbl

[12] S. C. Bagchi, A. Sitaram, “Spherical mean periodic functions on semisimple Lie groups”, Pacific J. Math., 84:2 (1979), 241–250 | DOI | MR | Zbl

[13] A. Wawrzyñczyk, “Spectral analysis and synthesis on symmetric spaces”, J. Math. Anal. Appl., 127:1 (1987), 1–17 | DOI | MR | Zbl

[14] S. Helgason, Geometric analysis on symmetric spaces, Math. Surveys Monogr., 39, reprint. with corr., Amer. Math. Soc., Providence, RI, 1997, xiv+611 pp. | MR | Zbl

[15] S. S. Platonov, “Spectral synthesis on symmetric spaces of rank 1”, St. Petersburg Math. J., 4:4 (1993), 777–788 | MR | Zbl

[16] S. S. Platonov, “Invariant subspaces in some function spaces on symmetric spaces. III”, Izv. Math., 66:1 (2002), 165–200 | DOI | DOI | MR | Zbl

[17] S. S. Platonov, “Invariant subspaces in some function spaces on the light cone in $\mathbb R^3$”, Sb. Math., 203:6 (2012), 864–892 | DOI | DOI | MR | Zbl

[18] C. A. Berenstein, R. Gay, “Sur la sythèse spectrale dans les espaces symmétriques”, J. Math. Pures Appl. (9), 65:3 (1986), 323–334 | MR | Zbl

[19] C. A. Berenstein, “Spectral synthesis on symmetric spaces”, Integral geometry (Brunswick, Maine, 1984), Contemp. Math., 63, Amer. Math. Soc., Providence, RI, 1987, 1–25 | DOI | MR | Zbl

[20] E. K. Narayanan, A. Sitaram, “Analogues of the Wiener–Tauberian and Schwartz theorems for radial functions on symmetric spaces”, Pacific J. Math., 249:1 (2011), 199–210 | DOI | MR | Zbl

[21] N. Peyerimhoff, E. Samiou, “Spherical spectral synthesis and two-radius theorems on Damek–Ricci spaces”, Ark. Mat., 48:1 (2010), 131–147 | DOI | MR | Zbl

[22] L. Ehrenpreis, F. I. Mautner, “Some properties of the Fourier transform on semi-simple Lie groups. II”, Trans. Amer. Math. Soc., 84 (1957), 1–55 | DOI | MR | Zbl

[23] Y. Weit, “On Schwartz's theorem for the motion group”, Ann. Inst. Fourier (Grenoble), 30:1 (1980), 91–107 | DOI | MR | Zbl

[24] P. K. Rashevskii, “Description of the closed invariant subspaces of certain function spaces”, Trans. Moscow Math. Soc., 2 (1980), 137–182 | MR | Zbl

[25] S. S. Platonov, “Invariant subspaces in some functional spaces on the group of motions of the Euclidean plane”, Siberian Math. J., 31:3 (1990), 472–481 | DOI | MR | Zbl

[26] S. S. Platonov, “Invariantnye podprostranstva v nekotorykh funktsionalnykh prostranstvakh na gruppe $\operatorname{SL}(2,\mathbf{C})$”, Tr. sem. po vekt. i tenz. anal., 21, 1983, 191–258 | MR | Zbl

[27] S. S. Platonov, “Invariant subspaces in certain function spaces on the simplest solvable Lie group”, Math. Notes, 35:1 (1984), 12–18 | DOI | MR | Zbl

[28] R. Bruggeman, J. Lewis, D. Zagier, “Function theory related to the group $\operatorname{PSL}_2(\mathbb{R})$”, From Fourier analysis and number theory to Radon transforms and geometry, Dev. Math., 28, Springer, New York, 2013, 107–201 | DOI | MR | Zbl

[29] V. V. Volchkov, Vit. V. Volchkov, “Spectral analysis on the group of conformal automorphisms of the unit disc”, Sb. Math., 207:7 (2016), 942–963 | DOI | DOI | MR | Zbl

[30] V. V. Volchkov, Vit. V. Volchkov, “Convolution equations in many-dimensional domains and on the Heisenberg reduced group”, Sb. Math., 199:8 (2008), 1139–1168 | DOI | DOI | MR | Zbl

[31] I. F. Krasichkov-Ternovskii, “Spectral synthesis and analytic continuation”, Russian Math. Surveys, 58:1 (2003), 31–108 | DOI | DOI | MR | Zbl

[32] L. Székelyhidi, Discrete spectral synthesis and its applications, Springer Monogr. Math., Springer, Dordrecht, 2006, xvi+117 pp. | DOI | MR | Zbl

[33] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 1, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xxvi+302 pp. | MR | MR | Zbl | Zbl

[34] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983, ix+391 pp. | DOI | MR | MR | Zbl | Zbl

[35] T. H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special functions: group theoretical aspects and applications, Math. Appl., Reidel, Dordrecht, 1984, 1–85 | MR | Zbl