Spectral synthesis on the group of conformal automorphisms of the unit disc
Sbornik. Mathematics, Tome 209 (2018) no. 1, pp. 1-34
Voir la notice de l'article provenant de la source Math-Net.Ru
Given a group $G$ of conformal automorphisms of the unit disc $\mathbb{D}$, the problem of spectral synthesis is solved for subspaces $\mathscr{U}\subset \mathscr{E}(G)$ that are invariant under right $G$-shifts and conjugations by elements of the subgroup $\operatorname{SO}(2)$. A new theorem on spectral synthesis for subspaces of $\mathscr{E}(\mathbb{D})$ that are invariant under weighted conformal shifts is an intermediate result.
Bibliography: 35 titles.
Keywords:
spectral synthesis, group of conformal automorphisms, invariant subspace.
@article{SM_2018_209_1_a0,
author = {V. V. Volchkov and Vit. V. Volchkov},
title = {Spectral synthesis on the group of conformal automorphisms of the unit disc},
journal = {Sbornik. Mathematics},
pages = {1--34},
publisher = {mathdoc},
volume = {209},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_1_a0/}
}
TY - JOUR AU - V. V. Volchkov AU - Vit. V. Volchkov TI - Spectral synthesis on the group of conformal automorphisms of the unit disc JO - Sbornik. Mathematics PY - 2018 SP - 1 EP - 34 VL - 209 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2018_209_1_a0/ LA - en ID - SM_2018_209_1_a0 ER -
V. V. Volchkov; Vit. V. Volchkov. Spectral synthesis on the group of conformal automorphisms of the unit disc. Sbornik. Mathematics, Tome 209 (2018) no. 1, pp. 1-34. http://geodesic.mathdoc.fr/item/SM_2018_209_1_a0/