The existence of a two-dimensional bounded system with continual and coinciding spectra of frequencies and of wandering exponents
Sbornik. Mathematics, Tome 209 (2018) no. 12, pp. 1812-1826 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A two-dimensional linear homogeneous differential system with continuous bounded coefficients is constructed so that the frequencies and wandering exponents of each of its nonzero solutions coincide with each other and the set of their values at different solutions (the spectrum) is some interval of the number line. Bibliography: 12 titles.
Keywords: linear system, characteristic exponents, frequencies, wandering exponents, uniformly distributed sequence.
@article{SM_2018_209_12_a7,
     author = {E. M. Shishlyannikov},
     title = {The existence of a~two-dimensional bounded system with continual and coinciding spectra of frequencies and of wandering exponents},
     journal = {Sbornik. Mathematics},
     pages = {1812--1826},
     year = {2018},
     volume = {209},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_12_a7/}
}
TY  - JOUR
AU  - E. M. Shishlyannikov
TI  - The existence of a two-dimensional bounded system with continual and coinciding spectra of frequencies and of wandering exponents
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1812
EP  - 1826
VL  - 209
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_12_a7/
LA  - en
ID  - SM_2018_209_12_a7
ER  - 
%0 Journal Article
%A E. M. Shishlyannikov
%T The existence of a two-dimensional bounded system with continual and coinciding spectra of frequencies and of wandering exponents
%J Sbornik. Mathematics
%D 2018
%P 1812-1826
%V 209
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2018_209_12_a7/
%G en
%F SM_2018_209_12_a7
E. M. Shishlyannikov. The existence of a two-dimensional bounded system with continual and coinciding spectra of frequencies and of wandering exponents. Sbornik. Mathematics, Tome 209 (2018) no. 12, pp. 1812-1826. http://geodesic.mathdoc.fr/item/SM_2018_209_12_a7/

[1] I. N. Sergeev, “Determination of complete frequencies of solutions of a linear system”, in “On the seminar on qualitative theory of differential equations at Moscow State University”, Differ. Equ., 45:6 (2009), 927–928 | DOI

[2] I. N. Sergeev, “Determining the wandering characteristics of solutions of a linear system”, in “On the seminar on qualitative theory of differential equations at Moscow State University”, Differ. Equ., 46:6 (2010), 911–912 | DOI

[3] I. N. Sergeev, “Oscillation and wandering characteristics of solutions of a linear differential system”, Izv. Math., 76:1 (2012), 139–162 | DOI | DOI | MR | Zbl

[4] I. N. Sergeev, “Lyapunovskie kharakteristiki koleblemosti, vraschaemosti i bluzhdaemosti reshenii differentsialnykh sistem”, Tr. sem. im. I. G. Petrovskogo, 31, Izd-vo Mosk. un-ta, M., 2016, 177–219

[5] D. S. Burlakov, S. V. Tsoi, “Equality of the complete and vector frequencies of solutions of a linear autonomous system”, in “On the seminar on qualitative theory of differential equations at Moscow state university”, Differ. Equ., 47:11 (2011), 1685 | DOI

[6] I. N. Sergeev, “The remarkable agreement between the oscillation and wandering characteristics of solutions of differential systems”, Sb. Math., 204:1 (2013), 114–132 | DOI | DOI | MR | Zbl

[7] A. Kh. Stash, “Existence of a two-dimensional linear system with continual spectra of total and vector frequencies”, Differ. Equ., 51:1 (2015), 146–148 | DOI | DOI | MR | Zbl

[8] I. N. Sergeev, “Definition and properties of characteristic frequencies of a linear equation”, J. Math. Sci. (N. Y.), 135:1 (2006), 2764–2793 | DOI | MR | Zbl

[9] A. Kh. Stash, “Polnye i vektornye chastoty nestrogikh znakov reshenii lineinykh avtonomnykh differentsialnykh uravnenii”, v “O seminare po kachestvennoi teorii differentsialnykh uravnenii v Moskovskom universitete”, Differents. uravneniya, 51:6 (2015), 829–830

[10] I. N. Sergeev, “Properties of characteristic frequencies of linear equations of arbitrary order”, J. Math. Sci. (N. Y.), 197:3 (2014), 410–426 | DOI | MR | Zbl

[11] I. N. Sergeev, “Polnyi nabor sootnoshenii mezhdu pokazatelyami koleblemosti, vraschaemosti i bluzhdaemosti reshenii differentsialnykh sistem”, Izv. IMI UdGU, 2015, no. 2(46), 171–183 | Zbl

[12] L. Kuipers, H. Niederreiter, Uniform distribution of sequences, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York–London–Sydney, 1974, xiv+390 pp. | MR | MR | Zbl | Zbl