Mots-clés : refinement equations, cyclotomic polynomial.
@article{SM_2018_209_12_a5,
author = {V. Yu. Protasov and Ya. Wang},
title = {Newman cyclotomic polynomials, refinable splines and the {Euler} binary partition function},
journal = {Sbornik. Mathematics},
pages = {1783--1802},
year = {2018},
volume = {209},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_12_a5/}
}
TY - JOUR AU - V. Yu. Protasov AU - Ya. Wang TI - Newman cyclotomic polynomials, refinable splines and the Euler binary partition function JO - Sbornik. Mathematics PY - 2018 SP - 1783 EP - 1802 VL - 209 IS - 12 UR - http://geodesic.mathdoc.fr/item/SM_2018_209_12_a5/ LA - en ID - SM_2018_209_12_a5 ER -
V. Yu. Protasov; Ya. Wang. Newman cyclotomic polynomials, refinable splines and the Euler binary partition function. Sbornik. Mathematics, Tome 209 (2018) no. 12, pp. 1783-1802. http://geodesic.mathdoc.fr/item/SM_2018_209_12_a5/
[1] A. Abdollahi, J. Cheshmavar, M. Taghavi, “Wavelets generated by the Rudin–Shapiro polynomials”, Cent. Eur. J. Math., 9:2 (2011), 441–448 | DOI | MR | Zbl
[2] J. Ablinger, J. Blümlein, C. Schneider, “Harmonic sums and polylogarithms generated by cyclotomic polynomials”, J. Math. Phys., 52:10 (2011), 102301, 52 pp. | DOI | MR | Zbl
[3] K. Anders, M. Dennison, J. W. Lansing, B. Reznick, “Congruence properties of binary partition functions”, Ann. Comb., 17:1 (2013), 15–26 | DOI | MR | Zbl
[4] T. M. Apostol, “Resultants of cyclotomic polynomials”, Proc. Amer. Math. Soc., 24:3 (1970), 457–462 | DOI | MR | Zbl
[5] E. Bach, J. Shallit, “Factoring with cyclotomic polynomials”, Math. Comput., 52:185 (1989), 201–219 | DOI | MR | Zbl
[6] L. Berg, G. Plonka, “Some notes on two-scale difference equations”, Functional equations and inequalities, Math. Appl., 518, Kluwer Acad. Publ., Dordrecht, 2000, 7–29 | MR | Zbl
[7] P. Borwein, K.-K. S. Choi, “On cyclotomic polynomials with $\pm 1$ coefficients”, Experiment. Math., 8:4 (1999), 399–407 | DOI | MR | Zbl
[8] A. Bettayeb, T. Goodman, “Some properties of multi-box splines”, J. Approx. Theory, 163:2 (2011), 197–212 | DOI | MR | Zbl
[9] N. G. de Bruijn, “On Mahler's partition problem”, Nederl. Akad. Wetensch., Proc., 51 (1948), 659–669, = Indagationes Math. 10, 210–220 (1948) | MR | Zbl
[10] L. Carlitz, “Generating functions and partition problems”, Proc. Sympos. Pure Math., 8, Amer. Math. Soc., Providence, R.I., 1965, 144–169 | DOI | MR | Zbl
[11] A. S. Cavaretta, W. Dahmen, C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93, no. 453, Amer. Math. Soc., Providence, R.I., 1991, vi+186 pp. | DOI | MR | Zbl
[12] R. F. Churchhouse, “Congruence properties of the binary partition function”, Proc. Cambridge Philos. Soc., 66:2 (1969), 371–376 | DOI | MR | Zbl
[13] E. A. Ciolan, P. A. García-Sánchez, P. Moree, “Cyclotomic numerical semigroups”, SIAM J. Discrete Math., 30:2 (2016), 650–668 | DOI | MR | Zbl
[14] Xin-Rong Dai, De-Jun Feng, Yang Wang, “Classification of refinable splines”, Constr. Approx., 24:2 (2006), 187–200 | DOI | MR | Zbl
[15] Xin-Rong Dai, De-Jun Feng, Yang Wang, “Structure of refinable splines”, Appl. Comput. Harmon. Anal., 22:3 (2007), 374–381 | DOI | MR | Zbl
[16] Xin-Rong Dai, Yang Wang, “Classification of refinable splines in $\mathbb R^d$”, Constr. Approx., 31:3 (2010), 343–358 | DOI | MR | Zbl
[17] H. Davenport, Multiplicative number theory, Grad. Texts in Math., 74, 2nd ed., rev. by H. L. Montgomery, Springer-Verlag, New York–Berlin, 1980, xiii+177 pp. | DOI | MR | Zbl
[18] G. Dresden, “Resultants of cyclotomic polynomials”, Rocky Mountain J. Math., 42:5 (2012), 1461–1469 | DOI | MR | Zbl
[19] A. Dubickas, “The divisors of Newman polynomials”, Fiz. Mat. Fak. Moksl. Semin. Darb., 6 (2003), 25–28 | MR | Zbl
[20] J. M. Dumont, N. Sidorov, A. Thomas, “Number of representations related to a linear recurrent basis”, Acta Arith., 88:4 (1999), 371–396 | DOI | MR | Zbl
[21] L. Euler, Introductio in analysin infinitorum (Lausanne, 1798), Opera Omnia. Series Prima: Opera Math., 8, B. G. Teubner, Leipzig, 1922, xii+392 pp. | MR | MR | Zbl | Zbl
[22] De-Jun Feng, P. Liardet, A. Thomas, “Partition functions in numeration systems with bounded multiplicity”, Unif. Distrib. Theory, 9:1 (2014), 43–77 | MR | Zbl
[23] De-Jun Feng, N. Sidorov, “Growth rate for beta-expansions”, Monatsh. Math., 162:1 (2011), 41–60 | DOI | MR | Zbl
[24] C.-E. Fröberg, “Accurate estimation of the number of binary partitions”, Nordisk Tidskr. Informationsbehandling (BIT), 17:4 (1977), 386–391 | DOI | MR | Zbl
[25] K. G. Hare, “Base-$d$ expansions with digits $0$ to $q-1$”, Exp. Math., 24:3 (2015), 295–303 | DOI | MR | Zbl
[26] M. J. Hirn, “The refinability of step functions”, Proc. Amer. Math. Soc., 136:3 (2008), 899–908 | DOI | MR | Zbl
[27] N. Guglielmi, V. Protasov, “Exact computation of joint spectral characteristics of linear operators”, Found. Comput. Math., 13:1 (2013), 37–97 | DOI | MR | Zbl
[28] T. N. T. Goodman, “Characterising pairs of refinable splines”, J. Approx. Theory, 91:3 (1997), 368–385 | DOI | MR | Zbl
[29] D. E. Knuth, “An almost linear recurrence”, Fibonacci Quart., 4 (1966), 117–128 | MR | Zbl
[30] R. P. Kurshan, A. M. Odlyzko, “Values of cyclotomic polynomials at roots of unity”, Math. Scand., 49:1 (1981), 15–35 | DOI | MR | Zbl
[31] S. Lang, Cyclotomic fields I and II, With an appendix by K. Rubin, Grad. Texts in Math., 121, Combined 2nd ed., Springer-Verlag, New York, 1990, xviii+433 pp. | DOI | MR | Zbl
[32] W. Lawton, S. L. Lee, Zuowei Shen, “Characterization of compactly supported refinable splines”, Adv. Comput. Math., 3:1-2 (1995), 137–145 | DOI | MR | Zbl
[33] M. Latapy, “Partitions of an integer into powers”, Discrete models: combinatorics, computation, and geometry (Paris, 2001), Discrete Math. Theor. Comput. Sci. Proc., AA, Maison Inform. Math. Discrèt. (MIMD), Paris, 2001, 215–227 | MR | Zbl
[34] K. Mahler, “On a special functional equation”, J. London Math. Soc., 15 (1940), 115–123 | DOI | MR | Zbl
[35] C. A. Micchelli, A. Pinkus, “Descartes systems from corner cutting”, Constr. Approx., 7:2 (1991), 161–194 | DOI | MR | Zbl
[36] G. Molteni, “Representation of a $2$-power as sum of $k$ $2$-powers: the asymptotic behavior”, Int. J. Number Theory, 8:8 (2012), 1923–1963 | DOI | MR | Zbl
[37] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Wavelet theory, Transl. Math. Monogr., 239, Amer. Math. Soc., Providence, RI, 2011, xiv+506 pp. | MR | MR | Zbl | Zbl
[38] W. B. Pennington, “On Mahler's partition problem”, Ann. of Math. (2), 57:3 (1953), 531–546 | DOI | MR | Zbl
[39] J. L. Pfaltz, “Evaluating the binary partition function when $N=2^n$”, Congr. Numer., 109 (1995), 3–12 | MR | Zbl
[40] V. Yu. Protasov, “Asymptotic behaviour of the partition function”, Sb. Math., 191:3 (2000), 381–414 | DOI | DOI | MR | Zbl
[41] V. Yu. Protasov, “On the asymptotics of the binary partition function”, Math. Notes, 76:1 (2004), 144–149 | DOI | DOI | MR | Zbl
[42] V. Yu. Protasov, “Piecewise-smooth refinable functions”, St. Petersburg Math. J., 16:5 (2005), 821–835 | DOI | MR | Zbl
[43] V. Yu. Protasov, “Spectral factorization of 2-block Toeplitz matrices and refinement equations”, St. Petersburg Math. J., 18:4 (2007), 607–646 | DOI | MR | Zbl
[44] V. Yu. Protasov, “The Euler binary partition function and subdivision schemes”, Math. Comp., 86:305 (2017), 1499–1524 | DOI | MR | Zbl
[45] B. Reznick, “Some binary partition functions”, Analytic number theory, Proceedings of a conference in honor of P. T. Bateman, B. C. Berndt, H. G. Diamond, H. Halberstam, A. Hildebrand (Allerton Park, IL, 1989), Progr. Math., 85, Boston, MA, Birkhäuser Boston, 1990, 451–477 | MR | Zbl
[46] Qiyu Sun, “Refinable functions with compact support”, J. Approx. Theory, 86:2 (1996), 240–252 | DOI | MR | Zbl
[47] A. Tanturri, “Sul numero delle partizioni d'un numero in potenze di 2”, Atti Accad. Naz. Lincei. Rend., 27 (1918), 399–403 | Zbl
[48] R. C. Vaughan, “Bounds for the coefficients of cyclotomic polynomials”, Michigan Math. J., 21:4 (1975), 289–295 | DOI | MR | Zbl
[49] B. L. van der Varden, Algebra, 2-e izd., Nauka, M., 1979, 624 pp. ; B. L. van der Waerden, Algebra, v. I, Heidelberger Taschenbücher, 12, 8. Aufl., Springer-Verlag, Berlin–New York, 1971, ix+272 pp. ; v. II, Heidelberger Taschenbücher, 23, 5. Aufl., 1967, x+300 pp. ; B. L. van der Waerden, Algebra, Reprint. from the English transl. from German of 1970, т. 1, 2, Springer-Verlag, New York, 1991, xiv+265 pp., xii+284 с. | MR | Zbl | MR | Zbl | MR | Zbl | MR | MR | Zbl