Regular subcategories in bounded derived categories of affine schemes
Sbornik. Mathematics, Tome 209 (2018) no. 12, pp. 1756-1782

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative Noetherian ring such that $X=\operatorname{Spec} R$ is connected. We prove that the category $D^b (\operatorname{coh} X)$ contains no proper full triangulated subcategories which are strongly generated. We also bound below the Rouquier dimension of a triangulated category $\mathscr{T}$, if there exists a triangulated functor $\mathscr{T} \to D^b(\operatorname{coh} X)$ with certain properties. Applications are given to the cohomological annihilator of $R$ and to point-like objects in $\mathscr{T}$. Bibliography: 15 titles.
Keywords: derived category, strong generator.
Mots-clés : affine scheme
@article{SM_2018_209_12_a4,
     author = {A. Elagin and V. A. Lunts},
     title = {Regular subcategories in bounded derived categories of affine schemes},
     journal = {Sbornik. Mathematics},
     pages = {1756--1782},
     publisher = {mathdoc},
     volume = {209},
     number = {12},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_12_a4/}
}
TY  - JOUR
AU  - A. Elagin
AU  - V. A. Lunts
TI  - Regular subcategories in bounded derived categories of affine schemes
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1756
EP  - 1782
VL  - 209
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_12_a4/
LA  - en
ID  - SM_2018_209_12_a4
ER  - 
%0 Journal Article
%A A. Elagin
%A V. A. Lunts
%T Regular subcategories in bounded derived categories of affine schemes
%J Sbornik. Mathematics
%D 2018
%P 1756-1782
%V 209
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_12_a4/
%G en
%F SM_2018_209_12_a4
A. Elagin; V. A. Lunts. Regular subcategories in bounded derived categories of affine schemes. Sbornik. Mathematics, Tome 209 (2018) no. 12, pp. 1756-1782. http://geodesic.mathdoc.fr/item/SM_2018_209_12_a4/