Regular subcategories in bounded derived categories of affine schemes
Sbornik. Mathematics, Tome 209 (2018) no. 12, pp. 1756-1782 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $R$ be a commutative Noetherian ring such that $X=\operatorname{Spec} R$ is connected. We prove that the category $D^b (\operatorname{coh} X)$ contains no proper full triangulated subcategories which are strongly generated. We also bound below the Rouquier dimension of a triangulated category $\mathscr{T}$, if there exists a triangulated functor $\mathscr{T} \to D^b(\operatorname{coh} X)$ with certain properties. Applications are given to the cohomological annihilator of $R$ and to point-like objects in $\mathscr{T}$. Bibliography: 15 titles.
Keywords: derived category, strong generator.
Mots-clés : affine scheme
@article{SM_2018_209_12_a4,
     author = {A. Elagin and V. A. Lunts},
     title = {Regular subcategories in bounded derived categories of affine schemes},
     journal = {Sbornik. Mathematics},
     pages = {1756--1782},
     year = {2018},
     volume = {209},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_12_a4/}
}
TY  - JOUR
AU  - A. Elagin
AU  - V. A. Lunts
TI  - Regular subcategories in bounded derived categories of affine schemes
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1756
EP  - 1782
VL  - 209
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_12_a4/
LA  - en
ID  - SM_2018_209_12_a4
ER  - 
%0 Journal Article
%A A. Elagin
%A V. A. Lunts
%T Regular subcategories in bounded derived categories of affine schemes
%J Sbornik. Mathematics
%D 2018
%P 1756-1782
%V 209
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2018_209_12_a4/
%G en
%F SM_2018_209_12_a4
A. Elagin; V. A. Lunts. Regular subcategories in bounded derived categories of affine schemes. Sbornik. Mathematics, Tome 209 (2018) no. 12, pp. 1756-1782. http://geodesic.mathdoc.fr/item/SM_2018_209_12_a4/

[1] M. F. Atiyah, I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.–London–Don Mills, Ont., 1969, ix+128 pp. | MR | MR | Zbl | Zbl

[2] A. A. Beilinson, J. Bernstein, P. Deligne, “Faisceaux pervers”, Analysis and topology on singular spaces (Luminy, 1981), v. I, Astérisque, 100, Soc. Math. France, Paris, 1982, 5–171 | MR | Zbl

[3] M. Bökstedt, A. Neeman, “Homotopy limits in triangulated categories”, Compositio Math., 86:2 (1993), 209–234 | MR | Zbl

[4] A. I. Bondal, M. Larsen, V. A. Lunts, “Grothendieck ring of pretriangulated categories”, Int. Math. Res. Not., 2004:29 (2004), 1461–1495 | DOI | MR | Zbl

[5] A. Bondal, M. Van den Bergh, “Generators and representability of functors in commutative and noncommutative geometry”, Mosc. Math. J., 3:1 (2003), 1–36 | MR | Zbl

[6] A. I. Efimov, V. A. Lunts, D. O. Orlov, “Deformation theory of objects in homotopy and derived categories III: Abelian categories”, Adv. Math., 226:5 (2011), 3857–3911 | DOI | MR | Zbl

[7] R. Hartshorne, Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64, with an appendix by P. Deligne, Lecture Notes in Math., 20, Springer-Verlag, Berlin–New York, 1966, vii+423 pp. | MR | Zbl

[8] S. B. Iyengar, R. Takahashi, “Annihilation of cohomology and decompositions of derived categories”, Homology Homotopy Appl., 16:2 (2014), 231–237 | DOI | MR | Zbl

[9] S. B. Iyengar, R. Takahashi, “Annihilation of cohomology and strong generation of module categories”, Int. Math. Res. Not., 2016:2 (2016), 499–535 | DOI | MR | Zbl

[10] G. M. Kelly, “Chain maps inducing zero homology maps”, Proc. Cambridge Philos. Soc., 61:4 (1965), 847–854 | DOI | MR | Zbl

[11] H. Matsumura, Commutative ring theory, Cambridge Stud. Adv. Math., 8, 2nd ed., Cambridge Univ. Press, Cambridge, 1989, xiv+320 pp. | DOI | MR | Zbl

[12] A. Neeman, “The chromatic tower for $D(R)$”, With an appendix by M. Bökstedt, Topology, 31:3 (1992), 519–532 | DOI | MR | Zbl

[13] A. Neeman, Triangulated categories, Ann. of Math. Stud., 148, Princeton Univ. Press, Princeton, NJ, 2001, viii+449 pp. | DOI | MR | Zbl

[14] S. Oppermann, J. Štóvíček, “Generating the bounded derived category and perfect ghosts”, Bull. Lond. Math. Soc., 44:2 (2012), 285–298 | DOI | MR | Zbl

[15] R. Rouquier, “Dimensions of triangulated categories”, J. K-theory, 1:2 (2008), 193–256 | DOI | MR | Zbl