The zeros of determinants of matrix-valued polynomials that are orthonormal on a~semi-infinite or finite interval
Sbornik. Mathematics, Tome 209 (2018) no. 12, pp. 1745-1755
Voir la notice de l'article provenant de la source Math-Net.Ru
Let the sequence of matrix-valued polynomials $(P_j)_{j=0}^{\infty }$ be orthonormal with respect to a nonnegative matrix-valued measure $\sigma $. Assuming that, for some $\alpha,\beta \in \mathbb{R}$, the support of $\sigma $ is contained in the closed set $[\alpha, +\infty)$, $(-\infty, \beta]$ or $[\alpha,\beta]$, the zeros of the polynomials $(\det P_j)_{j=0}^{\infty }$ are shown to lie in the open set $(\alpha, +\infty)$, $(-\infty, \beta)$ or $(\alpha,\beta)$, respectively.v
Bibliography: 10 titles.
Keywords:
nonnegative matrix-valued measure, orthogonal matrix-valued polynomials, zeros of determinants of orthogonal matrix-valued polynomials
Mots-clés : matrix moment problem.
Mots-clés : matrix moment problem.
@article{SM_2018_209_12_a3,
author = {Yu. M. Dyukarev},
title = {The zeros of determinants of matrix-valued polynomials that are orthonormal on a~semi-infinite or finite interval},
journal = {Sbornik. Mathematics},
pages = {1745--1755},
publisher = {mathdoc},
volume = {209},
number = {12},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_12_a3/}
}
TY - JOUR AU - Yu. M. Dyukarev TI - The zeros of determinants of matrix-valued polynomials that are orthonormal on a~semi-infinite or finite interval JO - Sbornik. Mathematics PY - 2018 SP - 1745 EP - 1755 VL - 209 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2018_209_12_a3/ LA - en ID - SM_2018_209_12_a3 ER -
%0 Journal Article %A Yu. M. Dyukarev %T The zeros of determinants of matrix-valued polynomials that are orthonormal on a~semi-infinite or finite interval %J Sbornik. Mathematics %D 2018 %P 1745-1755 %V 209 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2018_209_12_a3/ %G en %F SM_2018_209_12_a3
Yu. M. Dyukarev. The zeros of determinants of matrix-valued polynomials that are orthonormal on a~semi-infinite or finite interval. Sbornik. Mathematics, Tome 209 (2018) no. 12, pp. 1745-1755. http://geodesic.mathdoc.fr/item/SM_2018_209_12_a3/