Mots-clés : matrix moment problem.
@article{SM_2018_209_12_a3,
author = {Yu. M. Dyukarev},
title = {The zeros of determinants of matrix-valued polynomials that are orthonormal on a~semi-infinite or finite interval},
journal = {Sbornik. Mathematics},
pages = {1745--1755},
year = {2018},
volume = {209},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_12_a3/}
}
TY - JOUR AU - Yu. M. Dyukarev TI - The zeros of determinants of matrix-valued polynomials that are orthonormal on a semi-infinite or finite interval JO - Sbornik. Mathematics PY - 2018 SP - 1745 EP - 1755 VL - 209 IS - 12 UR - http://geodesic.mathdoc.fr/item/SM_2018_209_12_a3/ LA - en ID - SM_2018_209_12_a3 ER -
Yu. M. Dyukarev. The zeros of determinants of matrix-valued polynomials that are orthonormal on a semi-infinite or finite interval. Sbornik. Mathematics, Tome 209 (2018) no. 12, pp. 1745-1755. http://geodesic.mathdoc.fr/item/SM_2018_209_12_a3/
[1] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, 2nd rev. ed., Amer. Math. Soc., Providence, RI, 1959, ix+421 pp. | MR | Zbl | Zbl
[2] C. Berg, “The matrix moment problem”, Coimbra lecture notes on orthogonal polynomials, Adv. Theory Spec. Funct. Orthogonal Polynomials, Nova Sci. Publ., New York, 2008, 1–57 | Zbl
[3] D. Damanik, A. Pushnitski, B. Simon, “The analytic theory of matrix orthogonal polynomials”, Surv. Approx. Theory, 4 (2008), 1–85 | MR | Zbl
[4] A. J. Durán, P. López-Rodríguez, “Orthogonal matrix polynomials: zeros and Blumenthal's theorem”, J. Approx. Theory, 84:1 (1996), 96–118 | DOI | MR | Zbl
[5] Yu. M. Dyukarev, “Indeterminacy criteria for the Stieltjes matrix moment problem”, Math. Notes, 75:1 (2004), 66–82 | DOI | DOI | MR | Zbl
[6] Yu. M. Dyukarev, “Indeterminacy of interpolation problems in the Stieltjes class”, Sb. Math., 196:3 (2005), 367–393 | DOI | DOI | MR | Zbl
[7] Yu. M. Dyukarev, “A generalized Stieltjes criterion for the complete indeterminacy of interpolation problems”, Math. Notes, 84:1 (2008), 22–37 | DOI | DOI | MR | Zbl
[8] Yu. M. Dyukarev, “Geometric and operator measures of degeneracy for the set of solutions to the Stieltjes matrix moment problem”, Sb. Math., 207:4 (2016), 519–536 | DOI | DOI | MR | Zbl
[9] N. I. Akhiezer, The classical moment problem amd some related questions in analysis, Hafner Publishing Co., New York, 1965, x+253 pp. | MR | MR | Zbl | Zbl
[10] A. V. Efimov, V. P. Potapov, “$J$-expanding matrix functions and their role in the analytical theory of electrical circuits”, Russian Math. Surveys, 28:1 (1973), 69–140 | DOI | MR | Zbl