The zeros of determinants of matrix-valued polynomials that are orthonormal on a semi-infinite or finite interval
Sbornik. Mathematics, Tome 209 (2018) no. 12, pp. 1745-1755 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let the sequence of matrix-valued polynomials $(P_j)_{j=0}^{\infty }$ be orthonormal with respect to a nonnegative matrix-valued measure $\sigma $. Assuming that, for some $\alpha,\beta \in \mathbb{R}$, the support of $\sigma $ is contained in the closed set $[\alpha, +\infty)$, $(-\infty, \beta]$ or $[\alpha,\beta]$, the zeros of the polynomials $(\det P_j)_{j=0}^{\infty }$ are shown to lie in the open set $(\alpha, +\infty)$, $(-\infty, \beta)$ or $(\alpha,\beta)$, respectively.v Bibliography: 10 titles.
Keywords: nonnegative matrix-valued measure, orthogonal matrix-valued polynomials, zeros of determinants of orthogonal matrix-valued polynomials
Mots-clés : matrix moment problem.
@article{SM_2018_209_12_a3,
     author = {Yu. M. Dyukarev},
     title = {The zeros of determinants of matrix-valued polynomials that are orthonormal on a~semi-infinite or finite interval},
     journal = {Sbornik. Mathematics},
     pages = {1745--1755},
     year = {2018},
     volume = {209},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_12_a3/}
}
TY  - JOUR
AU  - Yu. M. Dyukarev
TI  - The zeros of determinants of matrix-valued polynomials that are orthonormal on a semi-infinite or finite interval
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1745
EP  - 1755
VL  - 209
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_12_a3/
LA  - en
ID  - SM_2018_209_12_a3
ER  - 
%0 Journal Article
%A Yu. M. Dyukarev
%T The zeros of determinants of matrix-valued polynomials that are orthonormal on a semi-infinite or finite interval
%J Sbornik. Mathematics
%D 2018
%P 1745-1755
%V 209
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2018_209_12_a3/
%G en
%F SM_2018_209_12_a3
Yu. M. Dyukarev. The zeros of determinants of matrix-valued polynomials that are orthonormal on a semi-infinite or finite interval. Sbornik. Mathematics, Tome 209 (2018) no. 12, pp. 1745-1755. http://geodesic.mathdoc.fr/item/SM_2018_209_12_a3/

[1] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, 2nd rev. ed., Amer. Math. Soc., Providence, RI, 1959, ix+421 pp. | MR | Zbl | Zbl

[2] C. Berg, “The matrix moment problem”, Coimbra lecture notes on orthogonal polynomials, Adv. Theory Spec. Funct. Orthogonal Polynomials, Nova Sci. Publ., New York, 2008, 1–57 | Zbl

[3] D. Damanik, A. Pushnitski, B. Simon, “The analytic theory of matrix orthogonal polynomials”, Surv. Approx. Theory, 4 (2008), 1–85 | MR | Zbl

[4] A. J. Durán, P. López-Rodríguez, “Orthogonal matrix polynomials: zeros and Blumenthal's theorem”, J. Approx. Theory, 84:1 (1996), 96–118 | DOI | MR | Zbl

[5] Yu. M. Dyukarev, “Indeterminacy criteria for the Stieltjes matrix moment problem”, Math. Notes, 75:1 (2004), 66–82 | DOI | DOI | MR | Zbl

[6] Yu. M. Dyukarev, “Indeterminacy of interpolation problems in the Stieltjes class”, Sb. Math., 196:3 (2005), 367–393 | DOI | DOI | MR | Zbl

[7] Yu. M. Dyukarev, “A generalized Stieltjes criterion for the complete indeterminacy of interpolation problems”, Math. Notes, 84:1 (2008), 22–37 | DOI | DOI | MR | Zbl

[8] Yu. M. Dyukarev, “Geometric and operator measures of degeneracy for the set of solutions to the Stieltjes matrix moment problem”, Sb. Math., 207:4 (2016), 519–536 | DOI | DOI | MR | Zbl

[9] N. I. Akhiezer, The classical moment problem amd some related questions in analysis, Hafner Publishing Co., New York, 1965, x+253 pp. | MR | MR | Zbl | Zbl

[10] A. V. Efimov, V. P. Potapov, “$J$-expanding matrix functions and their role in the analytical theory of electrical circuits”, Russian Math. Surveys, 28:1 (1973), 69–140 | DOI | MR | Zbl