A universal criterion for quasi-analytic classes in Jordan domains
Sbornik. Mathematics, Tome 209 (2018) no. 12, pp. 1728-1744 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Carleman classes in Jordan domains in the complex plane are investigated. A criterion for regular Carleman classes to be quasi-analytic is established, which is universal in a certain sense for all weakly uniform domains. The proof is based on a solution of the Dirichlet problem with unbounded boundary function, and a result on bounds for the harmonic measure due to Beurling plays a substantial role. Bibliography: 20 titles.
Keywords: harmonic measure, Dirichlet problem.
Mots-clés : quasi-analytic classes in Jordan domains
@article{SM_2018_209_12_a2,
     author = {R. A. Gaisin},
     title = {A~universal criterion for quasi-analytic classes in {Jordan} domains},
     journal = {Sbornik. Mathematics},
     pages = {1728--1744},
     year = {2018},
     volume = {209},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_12_a2/}
}
TY  - JOUR
AU  - R. A. Gaisin
TI  - A universal criterion for quasi-analytic classes in Jordan domains
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1728
EP  - 1744
VL  - 209
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_12_a2/
LA  - en
ID  - SM_2018_209_12_a2
ER  - 
%0 Journal Article
%A R. A. Gaisin
%T A universal criterion for quasi-analytic classes in Jordan domains
%J Sbornik. Mathematics
%D 2018
%P 1728-1744
%V 209
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2018_209_12_a2/
%G en
%F SM_2018_209_12_a2
R. A. Gaisin. A universal criterion for quasi-analytic classes in Jordan domains. Sbornik. Mathematics, Tome 209 (2018) no. 12, pp. 1728-1744. http://geodesic.mathdoc.fr/item/SM_2018_209_12_a2/

[1] V. V. Andrievskii, V. I. Belyi, V. K. Dzjadyk, Conformal invariants in constructive theory of functions of complex variable, Adv. Ser. Math. Sci. Eng., 1, World Fed. Publ., Atlanta, GA, 1995, x+199 pp. | MR | MR | Zbl

[2] B. R.-Salinas, “Functions with null moments”, Rev. Acad. Ci. Madrid, 49 (1955), 331–368 (Spanish) | MR | Zbl

[3] M. M. Džrbašjan, G. S. Kočarjan, “Uniqueness theorems for some classes of analytic functions”, Math. USSR-Izv., 7:1 (1973), 95–129 | DOI | MR | Zbl

[4] B. I. Korenbljum, “Conditions of nontriviality of certain classes of functions analytic in a sector, and problems of quasianalyticity”, Soviet Math. Dokl., 7 (1966), 232–236 | MR | Zbl

[5] B. I. Korenblyum, “Quasianalytic classes of functions in a circle”, Soviet Math. Dokl., 6 (1965), 1155–1158 | MR | Zbl

[6] A. A. Borichev, “Analytic quasi-analyticity and asymptotically holomorphic functions”, St. Petersburg Math. J., 4:2 (1993), 259–272 | MR | Zbl

[7] R. S. Yulmukhametov, Priblizhenie subgarmonicheskikh funktsii i primeneniya, Diss. ... dokt. fiz.-matem. nauk, MIAN SSSR, M., 1987

[8] K. V. Trunov, R. S. Yulmukhametov, “Quasianalytic Carleman classes on bounded domains”, St. Petersburg Math. J., 20:2 (2009), 289–317 | DOI | MR | Zbl

[9] E. M. Dyn'kin, “Pseudoanalytic extension of smooth functions. The uniform scale”, Amer. Math. Soc. Transl. Ser. 2, 115, Amer. Math. Soc., Providence, RI, 1980, 33–58 | DOI | MR | Zbl

[10] E. M. Dyn'kin, “Functions with given estimate for $\partial f/\partial\overline z$, and N. Levinson's theorem”, Math. USSR-Sb., 18:2 (1972), 181–189 | DOI | MR | Zbl

[11] S. Mandelbroit, Kvazianaliticheskie klassy funktsii, ONTI, M.–L., 1937, 108 pp.

[12] S. Mandelbrojt, Séries adhérentes, régularisation des suites, applications, Gauthier-Villars, Paris, 1952, xiv+277 pp. | MR | MR | Zbl

[13] A. Beurling, “Analytic continuation across a linear boundary”, Acta Math., 128:3-4 (1972), 153–182 | DOI | MR | Zbl

[14] R. A. Gaisin, “Quasi-analyticity criteria of Salinas–Korenblum type for general domains”, Ufa Math. J., 5:3 (2013), 28–39 | DOI | MR

[15] T. Bang, Om quasi-analytiske Funktioner, Thesis, Univ. of Copenhagen, 1946, 101 pp. | MR

[16] M. A. Evgrafov, Analytic functions, W. B. Saunders Co., Philadelphia, PA–London, 1966, x+336 pp. | MR | MR | Zbl | Zbl

[17] M. Sodin, “Lars Ahlfors' thesis”, Lectures in memory of Lars Ahlfors (Haifa, 1996), Israel Math. Conf. Proc., 14, Bar-Ilan Univ., Ramat Gan, 2000, 113–134 | MR | Zbl

[18] I. I. Priwalow, Randeigenschaften analytischer Funktionen, Hochschulbücher für Mathematik, 25, 2. überarb. und erg. Aufl., VEB Deutscher Verlag der Wissenschaften, Berlin, 1956, viii+247 pp. | MR | MR | Zbl | Zbl

[19] A. M. Gaĭsin, I. G. Kinzyabulatov, “A Levinson–Sjöberg type theorem. Applications”, Sb. Math., 199:7 (2008), 985–1007 | DOI | DOI | MR | Zbl

[20] R. A. Gaisin, “Regularization of sequences in sense of E. M. Dyn'kin”, Ufa Math. J., 7:2 (2015), 64–70 | DOI