A~universal criterion for quasi-analytic classes in Jordan domains
Sbornik. Mathematics, Tome 209 (2018) no. 12, pp. 1728-1744
Voir la notice de l'article provenant de la source Math-Net.Ru
Carleman classes in Jordan domains in the complex plane are investigated. A criterion for regular Carleman classes to be quasi-analytic is established, which is universal in a certain sense for all weakly uniform domains. The proof is based on a solution of the Dirichlet problem with unbounded boundary function, and a result on bounds for the harmonic measure due to Beurling plays a substantial role.
Bibliography: 20 titles.
Keywords:
harmonic measure, Dirichlet problem.
Mots-clés : quasi-analytic classes in Jordan domains
Mots-clés : quasi-analytic classes in Jordan domains
@article{SM_2018_209_12_a2,
author = {R. A. Gaisin},
title = {A~universal criterion for quasi-analytic classes in {Jordan} domains},
journal = {Sbornik. Mathematics},
pages = {1728--1744},
publisher = {mathdoc},
volume = {209},
number = {12},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_12_a2/}
}
R. A. Gaisin. A~universal criterion for quasi-analytic classes in Jordan domains. Sbornik. Mathematics, Tome 209 (2018) no. 12, pp. 1728-1744. http://geodesic.mathdoc.fr/item/SM_2018_209_12_a2/