Liouville classification of integrable geodesic flows in a potential field on two-dimensional manifolds of revolution: the torus and the Klein bottle
Sbornik. Mathematics, Tome 209 (2018) no. 11, pp. 1644-1676 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study integrable geodesic flows on surfaces of revolution (the torus and the Klein bottle). We obtain a Liouville classification of integrable geodesic flows on the surfaces under consideration with potential in the case of a linear integral. Here, the potential is invariant under an isometric action of the circle on the manifold of revolution. This classification is obtained on the basis of calculating the Fomenko-Zieschang invariants (marked molecules) of the systems. Bibliography: 18 titles.
Keywords: Hamiltonian system, geodesic flow, marked molecule
Mots-clés : Liouville equivalence, Fomenko-Zieschang invariant.
@article{SM_2018_209_11_a4,
     author = {D. S. Timonina},
     title = {Liouville classification of integrable geodesic flows in a~potential field on two-dimensional manifolds of revolution: the torus and the {Klein} bottle},
     journal = {Sbornik. Mathematics},
     pages = {1644--1676},
     year = {2018},
     volume = {209},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_11_a4/}
}
TY  - JOUR
AU  - D. S. Timonina
TI  - Liouville classification of integrable geodesic flows in a potential field on two-dimensional manifolds of revolution: the torus and the Klein bottle
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1644
EP  - 1676
VL  - 209
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_11_a4/
LA  - en
ID  - SM_2018_209_11_a4
ER  - 
%0 Journal Article
%A D. S. Timonina
%T Liouville classification of integrable geodesic flows in a potential field on two-dimensional manifolds of revolution: the torus and the Klein bottle
%J Sbornik. Mathematics
%D 2018
%P 1644-1676
%V 209
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2018_209_11_a4/
%G en
%F SM_2018_209_11_a4
D. S. Timonina. Liouville classification of integrable geodesic flows in a potential field on two-dimensional manifolds of revolution: the torus and the Klein bottle. Sbornik. Mathematics, Tome 209 (2018) no. 11, pp. 1644-1676. http://geodesic.mathdoc.fr/item/SM_2018_209_11_a4/

[1] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl

[2] A. T. Fomenko, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl

[3] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl

[4] E. O. Kantonistova, “Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution”, Sb. Math., 207:3 (2016), 358–399 | DOI | DOI | MR | Zbl

[5] E. O. Kantonistova, “Liouville classification of integrable Hamiltonian systems on surfaces of revolution”, Moscow Univ. Math. Bull., 70:5 (2015), 220–222 | DOI | MR | Zbl

[6] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl

[7] A. V. Bolsinov, A. T. Fomenko, “Orbital classification of geodesic flows on two-dimensional ellipsoids. The Jacobi problem is orbitally equivalent to the integrable Euler case in rigid body dynamics”, Funct. Anal. Appl., 29:3 (1995), 149–160 | DOI | MR | Zbl

[8] A. T. Fomenko, “A bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A new topological invariant of higher-dimensional integrable systems”, Math. USSR-Izv., 39:1 (1992), 731–759 | DOI | MR | Zbl

[9] A. T. Fomenko, “A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds”, Funct. Anal. Appl., 25:4 (1991), 262–272 | DOI | MR | Zbl

[10] A. T. Fomenko, P. V. Morozov, “Some new results in topological classification of integrable systems in rigid body dynamics”, Contemporary geometry and related topics (Belgrade, Yugoslavia, 2002), World Sci. Publ., River Edge, NJ, 2004, 201–222 | DOI | MR | Zbl

[11] A. V. Bolsinov, A. T. Fomenko, A. A. Oshemkov, Topological methods in the theory of integrable Hamiltonian systems, Camb. Sci. Publ., Cambridge, 2006, viii+330 pp. | Zbl

[12] E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353 | DOI | DOI | MR | Zbl

[13] E. A. Kudryavtseva, A. T. Fomenko, “Symmetries groups of nice Morse functions on surfaces”, Dokl. Math., 86:2 (2012), 691–693 | DOI | MR | Zbl

[14] A. T. Fomenko, A. Konyaev, “Algebra and geometry through Hamiltonian systems”, Continuous and distributed systems. Theory and applications, Solid Mech. Appl., 211, Springer, Cham, 2014, 3–21 | DOI | MR | Zbl

[15] V. V. Fokicheva, A. T. Fomenko, “Integrable billiards model important integrable cases of rigid body dynamics”, Dokl. Math., 92:3 (2015), 682–684 | DOI | DOI | MR | Zbl

[16] V. V. Fokicheva, A. T. Fomenko, “Billiard systems as the models for the rigid body dynamics”, Advances in dynamical systems and control, Stud. Syst. Decis. Control, 69, Springer, [Cham], 2016, 13–33 | DOI | MR | Zbl

[17] D. S. Timonina, “Topological classification of integrable geodesic flows in a potential field on the torus of revolution”, Lobachevskii J. Math., 38:6 (2017), 1108–1120 | DOI | MR | Zbl

[18] A. L. Besse, Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb., 93, Springer-Verlag, Berlin–New York, 1978, ix+262 pp. | MR | MR | Zbl