Liouville classification of integrable geodesic flows in a~potential field on two-dimensional manifolds of revolution: the torus and the Klein bottle
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 209 (2018) no. 11, pp. 1644-1676
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study integrable geodesic flows on surfaces of revolution (the torus and the Klein bottle). We obtain a Liouville classification of integrable geodesic flows on the surfaces under consideration with potential in the case of a linear integral. Here, the potential is invariant under an isometric action of the circle on the manifold of revolution. This classification is obtained on the basis of calculating the Fomenko-Zieschang invariants (marked molecules) of the systems.
Bibliography: 18 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Hamiltonian system, geodesic flow, marked molecule
Mots-clés : Liouville equivalence, Fomenko-Zieschang invariant.
                    
                  
                
                
                Mots-clés : Liouville equivalence, Fomenko-Zieschang invariant.
@article{SM_2018_209_11_a4,
     author = {D. S. Timonina},
     title = {Liouville classification of integrable geodesic flows in a~potential field on two-dimensional manifolds of revolution: the torus and the {Klein} bottle},
     journal = {Sbornik. Mathematics},
     pages = {1644--1676},
     publisher = {mathdoc},
     volume = {209},
     number = {11},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_11_a4/}
}
                      
                      
                    TY - JOUR AU - D. S. Timonina TI - Liouville classification of integrable geodesic flows in a~potential field on two-dimensional manifolds of revolution: the torus and the Klein bottle JO - Sbornik. Mathematics PY - 2018 SP - 1644 EP - 1676 VL - 209 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2018_209_11_a4/ LA - en ID - SM_2018_209_11_a4 ER -
%0 Journal Article %A D. S. Timonina %T Liouville classification of integrable geodesic flows in a~potential field on two-dimensional manifolds of revolution: the torus and the Klein bottle %J Sbornik. Mathematics %D 2018 %P 1644-1676 %V 209 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2018_209_11_a4/ %G en %F SM_2018_209_11_a4
D. S. Timonina. Liouville classification of integrable geodesic flows in a~potential field on two-dimensional manifolds of revolution: the torus and the Klein bottle. Sbornik. Mathematics, Tome 209 (2018) no. 11, pp. 1644-1676. http://geodesic.mathdoc.fr/item/SM_2018_209_11_a4/
