Shift dynamical systems and measurable selectors of multivalued maps
Sbornik. Mathematics, Tome 209 (2018) no. 11, pp. 1611-1643 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A condition is given for the existence of homomorphisms from compact invariant sets of shift dynamical systems of strongly measurable multivalued maps with values in a complete metric space to shift dynamical systems of strongly measurable selectors of these maps. We prove the existence of recurrent and almost automorphic selectors of Stepanov type, satisfying certain complementary conditions, for multivalued recurrent and almost automorphic Stepanov-type maps. Bibliography: 35 items.
Keywords: shift dynamical systems, multivalued mapping, recurrent function.
@article{SM_2018_209_11_a3,
     author = {L. I. Danilov},
     title = {Shift dynamical systems and measurable selectors of multivalued maps},
     journal = {Sbornik. Mathematics},
     pages = {1611--1643},
     year = {2018},
     volume = {209},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_11_a3/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - Shift dynamical systems and measurable selectors of multivalued maps
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1611
EP  - 1643
VL  - 209
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_11_a3/
LA  - en
ID  - SM_2018_209_11_a3
ER  - 
%0 Journal Article
%A L. I. Danilov
%T Shift dynamical systems and measurable selectors of multivalued maps
%J Sbornik. Mathematics
%D 2018
%P 1611-1643
%V 209
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2018_209_11_a3/
%G en
%F SM_2018_209_11_a3
L. I. Danilov. Shift dynamical systems and measurable selectors of multivalued maps. Sbornik. Mathematics, Tome 209 (2018) no. 11, pp. 1611-1643. http://geodesic.mathdoc.fr/item/SM_2018_209_11_a3/

[1] H. A. Antosiewicz, A. Cellina, “Continuous selections and differential relations”, J. Differential Equations, 19:2 (1975), 386–398 | DOI | MR | Zbl

[2] A. Fryszkowski, “Continuous selections for a class of non-convex multivalued maps”, Studia Math., 76:2 (1983), 163–174 | DOI | MR | Zbl

[3] A. V. Bogatyrev, “Continuous branches of multivalued mappings with nonconvex right side”, Math. USSR-Sb., 48:2 (1984), 339–348 | DOI | MR | Zbl

[4] A. I. Bulgakov, “On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions”, Math. USSR-Sb., 64:1 (1989), 295–303 | DOI | MR | Zbl

[5] A. Bressan, G. Colombo, “Extensions and selections of maps with decomposable values”, Studia Math., 90:1 (1988), 69–86 | DOI | MR | Zbl

[6] V. V. Goncharov, A. A. Tolstonogov, “Joint continuous selections of multivalued mappings with nonconvex values, and their applications”, Math. USSR-Sb., 73:2 (1992), 319–339 | DOI | MR | Zbl

[7] A. I. Bulgakov, “Continuous branches of multivalued mappings and integral inclusions with nonconvex values and their applications. I”, Differ. Equ., 28:3 (1992), 303–311 | MR | Zbl

[8] V. V. Goncharov, A. A. Tolstonogov, “Continuous selections for a family of nonconvex-valued mappings with noncompact domain”, Siberian Math. J., 35:3 (1994), 479–494 | DOI | MR | Zbl

[9] J. Andres, “Bounded, almost-periodic and periodic solutions of quasilinear differential inclusions”, Differential inclusions and optimal control, Lect. Notes Nonlinear Anal., 2, Juliusz Schauder Center for Nonlinear Studies, Toruń, 1998, 19–32 | Zbl

[10] J. Andres, A. M. Bersani, K. Leśniak, “On some almost-periodicity problems in various metrics”, Acta Appl. Math., 65:1-3 (2001), 35–57 | DOI | MR | Zbl

[11] J. Andres, A. M. Bersani, R. F. Grande, “Hierarchy of almost-periodic function spaces”, Rend. Mat. Appl. (7), 26:2 (2006), 121–188 | MR | Zbl

[12] A. M. Dolbilov, I. Ya. Shneĭberg, “Multivalued almost-periodic mappings and selections of them”, Siberian Math. J., 32:2 (1991), 326–328 | DOI | MR | Zbl

[13] L. I. Danilov, “Rekurrentnye i pochti rekurrentnye mnogoznachnye otobrazheniya i ikh secheniya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2011, no. 2, 19–51 | Zbl

[14] L. I. Danilov, “O mnogoznachnykh pochti periodicheskikh otobrazheniyakh, zavisyaschikh ot parametra”, Vestnik UdGU, 1994, no. 2, 29–44 | Zbl

[15] L. I. Danilov, “Pochti periodicheskie secheniya mnogoznachnykh otobrazhenii”, Izv. otd. matem. i inform. UdGU, 1993, no. 1, 16–78 | Zbl

[16] L. I. Danilov, “On Weyl almost periodic selections of multivalued maps”, J. Math. Anal. Appl., 316:1 (2006), 110–127 | DOI | MR | Zbl

[17] L. I. Danilov, “Ob odnom klasse pochti periodicheskikh po Veilyu sechenii mnogoznachnykh otobrazhenii”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2009, no. 1, 24–45

[18] L. I. Danilov, “O pochti periodicheskikh po Bezikovichu secheniyakh mnogoznachnykh otobrazhenii”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2008, no. 1, 97–120

[19] A. E. Irisov, E. L. Tonkov, “Dostatochnye usloviya optimalnosti rekurrentnykh po Birkgofu dvizhenii differentsialnogo vklyucheniya”, Vestn. Udmurtsk. un-ta. Matem., 2005, no. 1, 59–74

[20] E. A. Panasenko, “O suschestvovanii rekurrentnykh i pochti periodicheskikh reshenii differentsialnogo vklyucheniya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2010, no. 3, 42–57

[21] E. A. Panasenko, L. I. Rodina, E. L. Tonkov, “The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff–Bebutov metric and differential inclusions”, Proc. Steklov Inst. Math. (Suppl.), 275, suppl. 1 (2011), S121–S136 | DOI | MR | Zbl

[22] E. A. Panasenko, “Dinamicheskaya sistema sdvigov na prostranstve mnogoznachnykh funktsii s zamknutymi obrazami”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2012, no. 2, 28–33 | Zbl

[23] V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Math. Ser., 22, Princeton Univ. Press, Princeton, NJ, 1960, viii+523 pp. | MR | MR | Zbl | Zbl

[24] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl | Zbl

[25] D. N. Cheban, “Levitan almost periodic and almost automorphic solutions of $V$-monotone differential equations”, J. Dynam. Differential Equations, 20:3 (2008), 669–697 | DOI | MR | Zbl

[26] R. Boles Basit, “The relationship between almost-periodic Levitan functions and almost-automorphic functions”, Moscow Univ. Math. Bull., 26(1971):3-4 (1973), 74–77 | MR | Zbl

[27] G. M. N'Guérékata, A. Pankov, “Stepanov-like almost automorphic functions and monotone evolution equations”, Nonlinear Anal., 68:9 (2008), 2658–2667 | DOI | MR | Zbl

[28] T. Diagana, G. M. N'Guérékata, “Stepanov-like almost automorphic functions and applications to some semilinear equations”, Appl. Anal., 86:6 (2007), 723–733 | DOI | MR | Zbl

[29] L. I. Danilov, “Rekurrentnye i pochti avtomorfnye secheniya mnogoznachnykh otobrazhenii”, Izv. IMI UdGU, 2015, no. 2(46), 45–52 | Zbl

[30] L. I. Danilov, “Rekurrentnye i pochti rekurrentnye mnogoznachnye otobrazheniya i ikh secheniya. III”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2014, no. 4, 25–52 | Zbl

[31] L. I. Danilov, “Rekurrentnye mnogoznachnye otobrazheniya i ikh secheniya”, Dinamika sistem i protsessy upravleniya, Trudy Mezhdunar. konf., posv. 90-letiyu so dnya rozhd. akad. N. N. Krasovskogo (Ekaterinburg, 2014), IMM UrO RAN, Ekaterinburg, 2015, 139–146

[32] L. I. Danilov, “Ravnomernaya approksimatsiya rekurrentnykh i pochti rekurrentnykh funktsii”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2013, no. 4, 36–54 | Zbl

[33] L. I. Danilov, “Rekurrentnye i pochti rekurrentnye mnogoznachnye otobrazheniya i ikh secheniya. II”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2012, no. 4, 3–21 | Zbl

[34] V. I. Bogachev, O. G. Smolyanov, Deistvitelnyi i funktsionalnyi analiz: universitetskii kurs, 2-e ispr., dop. izd., NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2011, 728 pp.

[35] M. G. Krein, A. A. Nudel'man, The Markov moment problem and extremal problems. Ideas and problems of P. L. Čebyšev and A. A. Markov and their further development, Transl. Math. Monogr., 50, Amer. Math. Soc., Providence, RI, 1977, v+417 pp. | MR | MR | Zbl | Zbl