Sets in $\mathbb{Z}_m$ whose difference sets avoid squares
Sbornik. Mathematics, Tome 209 (2018) no. 11, pp. 1603-1610 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that the bound $|A|\leq m^{1/2}(3n)^{1.5n}$ holds for all square-free $m\in\mathbb{N}$ and any set $A\subset\mathbb{Z}_m$ such that $A-A$ contains no nonzero squares, where $n$ denotes the number of odd prime divisors of $m$. Bibliography: 9 titles.
Keywords: This research was funded by a grant of the Russian Science Foundation (project no. 14-11-00702).
@article{SM_2018_209_11_a2,
     author = {M. R. Gabdullin},
     title = {Sets in $\mathbb{Z}_m$ whose difference sets avoid squares},
     journal = {Sbornik. Mathematics},
     pages = {1603--1610},
     year = {2018},
     volume = {209},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_11_a2/}
}
TY  - JOUR
AU  - M. R. Gabdullin
TI  - Sets in $\mathbb{Z}_m$ whose difference sets avoid squares
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1603
EP  - 1610
VL  - 209
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_11_a2/
LA  - en
ID  - SM_2018_209_11_a2
ER  - 
%0 Journal Article
%A M. R. Gabdullin
%T Sets in $\mathbb{Z}_m$ whose difference sets avoid squares
%J Sbornik. Mathematics
%D 2018
%P 1603-1610
%V 209
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2018_209_11_a2/
%G en
%F SM_2018_209_11_a2
M. R. Gabdullin. Sets in $\mathbb{Z}_m$ whose difference sets avoid squares. Sbornik. Mathematics, Tome 209 (2018) no. 11, pp. 1603-1610. http://geodesic.mathdoc.fr/item/SM_2018_209_11_a2/

[1] A. Sárközy, “On difference sets of sequences of integers. I”, Acta Math. Acad. Sci. Hungar., 31:1-2 (1978), 125–149 | DOI | MR | Zbl

[2] J. Pintz, W. L. Steiger, E. Szemerédi, “On sets of natural numbers whose difference set contains no squares”, J. London Math. Soc. (2), 37:2 (1988), 219–231 | DOI | MR | Zbl

[3] A. Balog, J. Pelikán, J. Pintz, E. Szemerédi, “Difference sets without $k$-th powers”, Acta Math. Hungar., 65:2 (1994), 165–187 | DOI | MR | Zbl

[4] I. Z. Ruzsa, “Difference sets without squares”, Period. Math. Hungar., 15:3 (1984), 205–209 | DOI | MR | Zbl

[5] M. Matolcsi, I. Ruzsa, Difference sets and positive exponential sums. II. Quadratic and cubic residues in cyclic groups, preprint

[6] S. D. Cohen, “Clique numbers of Paley graphs”, Quaestiones Math., 11:2 (1988), 225–231 | DOI | MR | Zbl

[7] S. W. Graham, C. J. Ringrose, “Lower bounds for least quadratic non-residues”, Analytic number theory (Allterton Park, IL), Progr. Math., 85, Birkhäuser Boston, Boston, MA, 1990, 269–309 | MR | Zbl

[8] T. Tao, Van Vu, Additive combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006, xviii+512 pp. | DOI | MR | Zbl

[9] N. Alon, “On the capacity of digraphs”, European J. Combin., 19:1 (1998), 1–5 | DOI | MR | Zbl