Sets in $\mathbb{Z}_m$ whose difference sets avoid squares
Sbornik. Mathematics, Tome 209 (2018) no. 11, pp. 1603-1610

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the bound $|A|\leq m^{1/2}(3n)^{1.5n}$ holds for all square-free $m\in\mathbb{N}$ and any set $A\subset\mathbb{Z}_m$ such that $A-A$ contains no nonzero squares, where $n$ denotes the number of odd prime divisors of $m$. Bibliography: 9 titles.
Keywords: This research was funded by a grant of the Russian Science Foundation (project no. 14-11-00702).
@article{SM_2018_209_11_a2,
     author = {M. R. Gabdullin},
     title = {Sets in $\mathbb{Z}_m$ whose difference sets avoid squares},
     journal = {Sbornik. Mathematics},
     pages = {1603--1610},
     publisher = {mathdoc},
     volume = {209},
     number = {11},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_11_a2/}
}
TY  - JOUR
AU  - M. R. Gabdullin
TI  - Sets in $\mathbb{Z}_m$ whose difference sets avoid squares
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1603
EP  - 1610
VL  - 209
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_11_a2/
LA  - en
ID  - SM_2018_209_11_a2
ER  - 
%0 Journal Article
%A M. R. Gabdullin
%T Sets in $\mathbb{Z}_m$ whose difference sets avoid squares
%J Sbornik. Mathematics
%D 2018
%P 1603-1610
%V 209
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_11_a2/
%G en
%F SM_2018_209_11_a2
M. R. Gabdullin. Sets in $\mathbb{Z}_m$ whose difference sets avoid squares. Sbornik. Mathematics, Tome 209 (2018) no. 11, pp. 1603-1610. http://geodesic.mathdoc.fr/item/SM_2018_209_11_a2/