@article{SM_2018_209_11_a2,
author = {M. R. Gabdullin},
title = {Sets in $\mathbb{Z}_m$ whose difference sets avoid squares},
journal = {Sbornik. Mathematics},
pages = {1603--1610},
year = {2018},
volume = {209},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_11_a2/}
}
M. R. Gabdullin. Sets in $\mathbb{Z}_m$ whose difference sets avoid squares. Sbornik. Mathematics, Tome 209 (2018) no. 11, pp. 1603-1610. http://geodesic.mathdoc.fr/item/SM_2018_209_11_a2/
[1] A. Sárközy, “On difference sets of sequences of integers. I”, Acta Math. Acad. Sci. Hungar., 31:1-2 (1978), 125–149 | DOI | MR | Zbl
[2] J. Pintz, W. L. Steiger, E. Szemerédi, “On sets of natural numbers whose difference set contains no squares”, J. London Math. Soc. (2), 37:2 (1988), 219–231 | DOI | MR | Zbl
[3] A. Balog, J. Pelikán, J. Pintz, E. Szemerédi, “Difference sets without $k$-th powers”, Acta Math. Hungar., 65:2 (1994), 165–187 | DOI | MR | Zbl
[4] I. Z. Ruzsa, “Difference sets without squares”, Period. Math. Hungar., 15:3 (1984), 205–209 | DOI | MR | Zbl
[5] M. Matolcsi, I. Ruzsa, Difference sets and positive exponential sums. II. Quadratic and cubic residues in cyclic groups, preprint
[6] S. D. Cohen, “Clique numbers of Paley graphs”, Quaestiones Math., 11:2 (1988), 225–231 | DOI | MR | Zbl
[7] S. W. Graham, C. J. Ringrose, “Lower bounds for least quadratic non-residues”, Analytic number theory (Allterton Park, IL), Progr. Math., 85, Birkhäuser Boston, Boston, MA, 1990, 269–309 | MR | Zbl
[8] T. Tao, Van Vu, Additive combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006, xviii+512 pp. | DOI | MR | Zbl
[9] N. Alon, “On the capacity of digraphs”, European J. Combin., 19:1 (1998), 1–5 | DOI | MR | Zbl