Sets in $\mathbb{Z}_m$ whose difference sets avoid squares
Sbornik. Mathematics, Tome 209 (2018) no. 11, pp. 1603-1610
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the bound $|A|\leq m^{1/2}(3n)^{1.5n}$ holds for all square-free $m\in\mathbb{N}$ and any set $A\subset\mathbb{Z}_m$ such that $A-A$ contains no nonzero squares, where $n$ denotes the number of odd prime divisors of $m$.
Bibliography: 9 titles.
Keywords:
This research was funded by a grant of the Russian Science Foundation (project no. 14-11-00702).
@article{SM_2018_209_11_a2,
author = {M. R. Gabdullin},
title = {Sets in $\mathbb{Z}_m$ whose difference sets avoid squares},
journal = {Sbornik. Mathematics},
pages = {1603--1610},
publisher = {mathdoc},
volume = {209},
number = {11},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_11_a2/}
}
M. R. Gabdullin. Sets in $\mathbb{Z}_m$ whose difference sets avoid squares. Sbornik. Mathematics, Tome 209 (2018) no. 11, pp. 1603-1610. http://geodesic.mathdoc.fr/item/SM_2018_209_11_a2/