An abstract Kolmogorov theorem, and an~application to metric spaces and topological groups
Sbornik. Mathematics, Tome 209 (2018) no. 11, pp. 1575-1602

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the method of averaging over the supports of $\delta$-functions, we generalise Kolmogorov's fundamental theorem on the existence of a trigonometric Fourier series that diverges almost everywhere to any bounded biorthonormal systems of complex-valued functions on an arbitrary measurable space. The abstract Kolmogorov theorem thus obtained is applied to construct divergent Fourier series on metric spaces and topological groups. We establish the existence of a Fourier series in the system of characters of an arbitrary compact Abelian group that is divergent almost everywhere. Bibliography: 37 titles.
Keywords: symmetrized Lebesgue functions, convergence almost everywhere, topological groups, characters.
Mots-clés : biorthonormal system
@article{SM_2018_209_11_a1,
     author = {S. V. Bochkarev},
     title = {An abstract {Kolmogorov} theorem, and an~application to metric spaces and topological groups},
     journal = {Sbornik. Mathematics},
     pages = {1575--1602},
     publisher = {mathdoc},
     volume = {209},
     number = {11},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_11_a1/}
}
TY  - JOUR
AU  - S. V. Bochkarev
TI  - An abstract Kolmogorov theorem, and an~application to metric spaces and topological groups
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1575
EP  - 1602
VL  - 209
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_11_a1/
LA  - en
ID  - SM_2018_209_11_a1
ER  - 
%0 Journal Article
%A S. V. Bochkarev
%T An abstract Kolmogorov theorem, and an~application to metric spaces and topological groups
%J Sbornik. Mathematics
%D 2018
%P 1575-1602
%V 209
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_11_a1/
%G en
%F SM_2018_209_11_a1
S. V. Bochkarev. An abstract Kolmogorov theorem, and an~application to metric spaces and topological groups. Sbornik. Mathematics, Tome 209 (2018) no. 11, pp. 1575-1602. http://geodesic.mathdoc.fr/item/SM_2018_209_11_a1/