An abstract Kolmogorov theorem, and an application to metric spaces and topological groups
Sbornik. Mathematics, Tome 209 (2018) no. 11, pp. 1575-1602 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the method of averaging over the supports of $\delta$-functions, we generalise Kolmogorov's fundamental theorem on the existence of a trigonometric Fourier series that diverges almost everywhere to any bounded biorthonormal systems of complex-valued functions on an arbitrary measurable space. The abstract Kolmogorov theorem thus obtained is applied to construct divergent Fourier series on metric spaces and topological groups. We establish the existence of a Fourier series in the system of characters of an arbitrary compact Abelian group that is divergent almost everywhere. Bibliography: 37 titles.
Keywords: symmetrized Lebesgue functions, convergence almost everywhere, topological groups, characters.
Mots-clés : biorthonormal system
@article{SM_2018_209_11_a1,
     author = {S. V. Bochkarev},
     title = {An abstract {Kolmogorov} theorem, and an~application to metric spaces and topological groups},
     journal = {Sbornik. Mathematics},
     pages = {1575--1602},
     year = {2018},
     volume = {209},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_11_a1/}
}
TY  - JOUR
AU  - S. V. Bochkarev
TI  - An abstract Kolmogorov theorem, and an application to metric spaces and topological groups
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1575
EP  - 1602
VL  - 209
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_11_a1/
LA  - en
ID  - SM_2018_209_11_a1
ER  - 
%0 Journal Article
%A S. V. Bochkarev
%T An abstract Kolmogorov theorem, and an application to metric spaces and topological groups
%J Sbornik. Mathematics
%D 2018
%P 1575-1602
%V 209
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2018_209_11_a1/
%G en
%F SM_2018_209_11_a1
S. V. Bochkarev. An abstract Kolmogorov theorem, and an application to metric spaces and topological groups. Sbornik. Mathematics, Tome 209 (2018) no. 11, pp. 1575-1602. http://geodesic.mathdoc.fr/item/SM_2018_209_11_a1/

[1] A. Kolmogoroff, “Une série de Fourier–Lebesgue divergente presque partout”, Fund. Math., 4 (1923), 324–328 | DOI | MR | Zbl | Zbl

[2] S. V. Bočkarev, “Logarithmic growth of arithmetic means of Lebesgue functions of bounded orthonormal systems”, Soviet Math. Dokl., 16:4 (1975), 799–802 | MR | Zbl

[3] S. V. Bočkarev, “A Fourier series in an arbitrary bounded orthonormal system that diverges on a set of positive measure”, Math. USSR-Sb., 27:3 (1975), 393–405 | DOI | MR | Zbl

[4] S. V. Bochkarev, “Metod usrednenii v teorii ortogonalnykh ryadov”, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), v. 2, Acad. Sci. Fennica, Helsinki, 1980, 599–604 | MR | Zbl

[5] S. V. Bochkarev, “A method of averaging in the theory of orthogonal series and some problems in the theory of bases”, Proc. Steklov Inst. Math., 146 (1980), 1–92 | MR | Zbl

[6] K. S. Kazaryan, “On some questions in the theory of orthogonal series”, Math. USSR-Sb., 47:1 (1984), 269–285 | DOI | MR | Zbl

[7] S. V. Bochkarev, “Kolmogorov's abstract theorem: application to metric spaces and topological groups”, Dokl. Math., 91:3 (2015), 367–370 | DOI | DOI | MR | Zbl

[8] S. Saks, Theory of the integral, Monogr. Mat., 7, 2nd rev. ed., Instytut Matematyczny PAN, Warszawa; G. E. Stechert, New York, 1937, vi+347 pp. | MR | Zbl

[9] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Springer-Verlag, Berlin; Academic Press, Inc., New York, 1965, xi+458 pp. | MR | MR | Zbl | Zbl

[10] S. V. Bochkarev, “Absolute convergence of Fourier series with respect to bounded systems”, Math. Notes, 15:3 (1974), 207–211 | DOI | MR | Zbl

[11] S. V. Bochkarev, Klassy funktsii i koeffitsienty Fure po polnym ortonormirovannym sistemam, Diss. $\dots$ dokt. fiz.-matem. nauk, MIAN, M., 1974, 196 pp.

[12] S. V. Bochkarev, “Asolute convergence of Fourier series with respect to complete orthonormal systems”, Russian Math. Surveys, 27:2 (1972), 55–81 | DOI | MR | Zbl

[13] S. V. Bočkarev, “On a problem of Zygmund”, Math. USSR-Izv., 7:3 (1973), 629–637 | DOI | MR | Zbl

[14] S. V. Bočkarev, “On the absolute convergence of Fourier series in bounded complete orthonormal systems of functions”, Math. USSR-Sb., 22:1 (1974), 201–216 | DOI | MR | Zbl

[15] A. Zygmund, “Remarque sur la convergence absolue des séries de Fourier”, J. London Math. Soc., 3:3 (1928), 194–196 | DOI | MR | Zbl

[16] R. Salem, “On a theorem of Zygmund”, Duke Math. J., 10 (1943), 23–31 | DOI | MR | Zbl

[17] N. K. Bary, A treatise on trigonometric series, v. I, II, A Pergamon Press Book The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | MR | Zbl

[18] J.-P. Kahane, Séries de Fourier absolument convergentes, Ergeb. Math. Grenzgeb., 50, Springer-Verlag, Berlin–New York, 1970, viii+169 pp. | MR | Zbl

[19] P. L. Ul'yanov, “Solved and unsolved problems in the theory of trigonometric and orthogonal series”, Russian Math. Surveys, 19:1 (1964), 1–62 | DOI | MR | Zbl

[20] I. Wik, “Criteria for absolute convergence of Fourier series of functions of bounded variation”, Trans. Amer. Math. Soc., 163:1 (1972), 1–24 | DOI | MR | Zbl

[21] S. V. Bochkarev, “Vallée–Poussin series in the spaces BMO, $L_1$, and $H^1(D)$, and multiplier inequalities”, Proc. Steklov Inst. Math., 210 (1995), 30–46 | MR | Zbl

[22] S. V. Bochkarev, “de la Vallée-Poussin means of Fourier series for the quadratic spectrum and for spectra with power-like density”, Russian Math. Surveys, 69:1 (2014), 119–152 | DOI | DOI | MR | Zbl

[23] E. M. Stein, “On limits of sequences of operators”, Ann. of Math. (2), 74 (1961), 140–170 | DOI | MR | Zbl

[24] S. V. Bochkarev, “A generalization of Kolmogorov's theorem to biorthogonal systems”, Proc. Steklov Inst. Math., 260 (2008), 37–49 | DOI | MR | Zbl

[25] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl

[26] G. Alexits, Convergence problems of orthogonal series, Internat. Ser. Monogr. Pure Appl. Math., 20, Pergamon Press, New York–Oxford–Paris, 1961, ix+350 pp. | MR | MR | Zbl | Zbl

[27] P. R. Halmos, Measure theory, D. Van Nostrand Company, Inc., New York, NY, 1950, xi+304 pp. | MR | MR | Zbl

[28] H. Federer, Geometric measure theory, Grundlehren Math. Wiss., 153, Springer-Verlag, New York, 1969, xiv+676 pp. | MR | MR | Zbl | Zbl

[29] L. Pontrjagin, Topological groups, Princeton Math. Ser., 2, Princeton Univ. Press, Princeton, 1939, ix+299 pp. | MR | Zbl

[30] E. Khyuitt, K. A. Ross, Abstraktnyi garmonicheskii analiz, v. I, Nauka, M., 1975, 654 pp. ; т. II, Мир, М., 1975, 901 с. ; E. Hewitt, K. A. Ross, Abstract harmonic analysis, т. I, Grundlehren Math. Wiss., 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963, viii+519 с. ; v. II, Grundlehren Math. Wiss., 152, Springer-Verlag, New York–Berlin, 1970, ix+771 pp. | MR | MR | DOI | MR | Zbl | MR | Zbl

[31] R. E. Edwards, E. Hewitt, “Pointwise limits for sequences of convolution operators”, Acta Math., 113 (1965), 181–218 | DOI | MR | Zbl

[32] M. A. Naimark, Normed rings, Wolters-Noordhoff Publ., Groningen, 1970, xvi+572 pp. | MR | MR | Zbl | Zbl

[33] A. Zygmund, Trigonometric series, v. II, 2nd ed., Cambridge Univ. Press, New York, 1959, vii+354 pp. | MR | MR | Zbl | Zbl

[34] S. V. Konyagin, “On everywhere divergence of trigonometric Fourier series”, Sb. Math., 191:1 (2000), 97–120 | DOI | DOI | MR | Zbl

[35] S. V. Bochkarev, “On the problem of the smoothness of functions whose Fourier–Walsh series diverge almost everywhere”, Dokl. Math., 61:2 (2000), 263–266 | MR | Zbl

[36] S. V. Bochkarev, “Everywhere divergent Fourier series with respect to the Walsh system and with respect to multiplicative systems”, Russian Math. Surveys, 59:1 (2004), 103–124 | DOI | DOI | MR | Zbl

[37] A. Kolmogoroff, “Une série de Fourier–Lebesgue divergente partout”, C. R. Math. Acad. Sci. Paris, 183 (1926), 1327–1328 | MR | Zbl | Zbl