Extremal trajectories in the sub-Lorentzian problem on the Engel group
Sbornik. Mathematics, Tome 209 (2018) no. 11, pp. 1547-1574 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathbb{E}$ be the Engel group and let $D$ be a rank-two left-invariant distribution with Lorentzian metric on $\mathbb{E}$. The sub-Lorentzian problem is stated as the problem of maximizing the sub-Lorentzian distance. A parametrization of timelike and spacelike normal extremal trajectories is obtained in terms of Jacobi elliptic functions. Discrete symmetry groups are described in the cases of timelike and spacelike trajectories; in both cases the fixed points and the corresponding Maxwell points are calculated for each symmetry. These calculations underlie estimates for the cut time (when the trajectory ceases to be globally optimal). Bibliography: 17 titles.
Keywords: Engel group, extremal trajectories, sub-Lorentzian metric, Jacobi functions.
@article{SM_2018_209_11_a0,
     author = {A. A. Ardentov and Yu. L. Sachkov and T. Huang and X. Yang},
     title = {Extremal trajectories in the {sub-Lorentzian} problem on the {Engel} group},
     journal = {Sbornik. Mathematics},
     pages = {1547--1574},
     year = {2018},
     volume = {209},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_11_a0/}
}
TY  - JOUR
AU  - A. A. Ardentov
AU  - Yu. L. Sachkov
AU  - T. Huang
AU  - X. Yang
TI  - Extremal trajectories in the sub-Lorentzian problem on the Engel group
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1547
EP  - 1574
VL  - 209
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_11_a0/
LA  - en
ID  - SM_2018_209_11_a0
ER  - 
%0 Journal Article
%A A. A. Ardentov
%A Yu. L. Sachkov
%A T. Huang
%A X. Yang
%T Extremal trajectories in the sub-Lorentzian problem on the Engel group
%J Sbornik. Mathematics
%D 2018
%P 1547-1574
%V 209
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2018_209_11_a0/
%G en
%F SM_2018_209_11_a0
A. A. Ardentov; Yu. L. Sachkov; T. Huang; X. Yang. Extremal trajectories in the sub-Lorentzian problem on the Engel group. Sbornik. Mathematics, Tome 209 (2018) no. 11, pp. 1547-1574. http://geodesic.mathdoc.fr/item/SM_2018_209_11_a0/

[1] M. Grochowski, “Geodesics in the sub-Lorentzian geometry”, Bull. Polish Acad. Sci. Math., 50:2 (2002), 161–178 | MR | Zbl

[2] Der-Chen Chang, I. Markina, A. Vasil'ev, “Sub-Lorentzian geometry on anti-de Sitter space”, J. Math. Pures Appl. (9), 90:1 (2008), 82–110 | DOI | MR | Zbl

[3] M. Grochowski, “Normal forms of germs of contact sub-Lorentzian structures on $\mathbb{R}^3$. Differentiability of the sub-Lorentzian distance function”, J. Dynam. Control Systems, 9:4 (2003), 531–547 | DOI | MR | Zbl

[4] M. Grochowski, “Reachable sets for the Heisenberg sub-Lorentzian structure on $\mathbb{R}^3$. An estimate for the distance function”, J. Dyn. Control Syst., 12:2 (2006), 145–160 | DOI | MR | Zbl

[5] M. Grochowski, “On the Heisenberg sub-Lorentzian metric on $\mathbb R^3$”, Geometric singularity theory, Banach Center Publ., 65, Polish Acad. Sci. Inst. Math., Warsaw, 2004, 57–65 | DOI | MR | Zbl

[6] A. Korolko, I. Markina, “Nonholonomic Lorentzian geometry on some $\mathbb{H}$-type groups”, J. Geom. Anal., 19:4 (2009), 864–889 | DOI | MR | Zbl

[7] E. Cartan, “Sur quelques quadratures dont l'élément différentiel contient des fonctions arbitraires”, Bull. Soc. Math. France, 29 (1901), 118–130 | DOI | MR | Zbl

[8] A. A. Ardentov, Yu. L. Sachkov, “Extremal trajectories in a nilpotent sub-Riemannian problem on the Engel group”, Sb. Math., 202:11 (2011), 1593–1615 | DOI | DOI | MR | Zbl

[9] A. A. Ardentov, Yu. L. Sachkov, “Conjugate points in nilpotent sub-Riemannian problem on the Engel group”, J. Math. Sci. (N. Y.), 195:3 (2013), 369–390 | DOI | MR | Zbl

[10] A. A. Ardentov, Yu. L. Sachkov, “Cut time in sub-Riemannian problem on Engel group”, ESAIM Control Optim. Calc. Var., 21:4 (2015), 958–988 | DOI | MR | Zbl

[11] Qihui Cai, Tiren Huang, Yu. L. Sachkov, Xiaoping Yang, “Geodesics in the Engel group with a sub-Lorentzian metric”, J. Dyn. Control Syst., 22:3 (2016), 465–483 | DOI | MR | Zbl

[12] B. O'Neill, Semi-Riemannian geometry. With applications to relativity, Pure Appl. Math., 103, Academic Press, Inc., New York, 1983, xiii+468 pp. | MR | Zbl

[13] J. K. Beem, P. E. Ehrlich, K. L. Easley, Global Lorentzian geometry, Monogr. Textbooks Pure Appl. Math., 202, 2nd ed., Marcel Dekker, Inc., New York, 1996, xiv+635 pp. | MR | Zbl

[14] N. I. Akhiezer, Elements of the theory of elliptic functions, Transl. Math. Monogr., 79, Amer. Math. Soc., Providence, RI, 1990, viii+237 pp. | MR | MR | Zbl | Zbl

[15] Yu. L. Sachkov, “Maxwell strata in Euler elastic problem”, J. Dyn. Control Syst., 14:2 (2008), 169–234 | DOI | MR | Zbl

[16] Yu. L. Sachkov, “Maxwell strata and symmetries in the problem of optimal rolling of a sphere over a plane”, Sb. Math., 201:7 (2010), 1029–1051 | DOI | DOI | MR | Zbl

[17] I. Moiseev, Yu. L. Sachkov, “Maxwell strata in sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:2 (2010), 380–399 | DOI | MR | Zbl