Extremal trajectories in the sub-Lorentzian problem on the Engel group
Sbornik. Mathematics, Tome 209 (2018) no. 11, pp. 1547-1574

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb{E}$ be the Engel group and let $D$ be a rank-two left-invariant distribution with Lorentzian metric on $\mathbb{E}$. The sub-Lorentzian problem is stated as the problem of maximizing the sub-Lorentzian distance. A parametrization of timelike and spacelike normal extremal trajectories is obtained in terms of Jacobi elliptic functions. Discrete symmetry groups are described in the cases of timelike and spacelike trajectories; in both cases the fixed points and the corresponding Maxwell points are calculated for each symmetry. These calculations underlie estimates for the cut time (when the trajectory ceases to be globally optimal). Bibliography: 17 titles.
Keywords: Engel group, extremal trajectories, sub-Lorentzian metric, Jacobi functions.
@article{SM_2018_209_11_a0,
     author = {A. A. Ardentov and Yu. L. Sachkov and T. Huang and X. Yang},
     title = {Extremal trajectories in the {sub-Lorentzian} problem on the {Engel} group},
     journal = {Sbornik. Mathematics},
     pages = {1547--1574},
     publisher = {mathdoc},
     volume = {209},
     number = {11},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_11_a0/}
}
TY  - JOUR
AU  - A. A. Ardentov
AU  - Yu. L. Sachkov
AU  - T. Huang
AU  - X. Yang
TI  - Extremal trajectories in the sub-Lorentzian problem on the Engel group
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1547
EP  - 1574
VL  - 209
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_11_a0/
LA  - en
ID  - SM_2018_209_11_a0
ER  - 
%0 Journal Article
%A A. A. Ardentov
%A Yu. L. Sachkov
%A T. Huang
%A X. Yang
%T Extremal trajectories in the sub-Lorentzian problem on the Engel group
%J Sbornik. Mathematics
%D 2018
%P 1547-1574
%V 209
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_11_a0/
%G en
%F SM_2018_209_11_a0
A. A. Ardentov; Yu. L. Sachkov; T. Huang; X. Yang. Extremal trajectories in the sub-Lorentzian problem on the Engel group. Sbornik. Mathematics, Tome 209 (2018) no. 11, pp. 1547-1574. http://geodesic.mathdoc.fr/item/SM_2018_209_11_a0/