@article{SM_2018_209_11_a0,
author = {A. A. Ardentov and Yu. L. Sachkov and T. Huang and X. Yang},
title = {Extremal trajectories in the {sub-Lorentzian} problem on the {Engel} group},
journal = {Sbornik. Mathematics},
pages = {1547--1574},
year = {2018},
volume = {209},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_11_a0/}
}
TY - JOUR AU - A. A. Ardentov AU - Yu. L. Sachkov AU - T. Huang AU - X. Yang TI - Extremal trajectories in the sub-Lorentzian problem on the Engel group JO - Sbornik. Mathematics PY - 2018 SP - 1547 EP - 1574 VL - 209 IS - 11 UR - http://geodesic.mathdoc.fr/item/SM_2018_209_11_a0/ LA - en ID - SM_2018_209_11_a0 ER -
A. A. Ardentov; Yu. L. Sachkov; T. Huang; X. Yang. Extremal trajectories in the sub-Lorentzian problem on the Engel group. Sbornik. Mathematics, Tome 209 (2018) no. 11, pp. 1547-1574. http://geodesic.mathdoc.fr/item/SM_2018_209_11_a0/
[1] M. Grochowski, “Geodesics in the sub-Lorentzian geometry”, Bull. Polish Acad. Sci. Math., 50:2 (2002), 161–178 | MR | Zbl
[2] Der-Chen Chang, I. Markina, A. Vasil'ev, “Sub-Lorentzian geometry on anti-de Sitter space”, J. Math. Pures Appl. (9), 90:1 (2008), 82–110 | DOI | MR | Zbl
[3] M. Grochowski, “Normal forms of germs of contact sub-Lorentzian structures on $\mathbb{R}^3$. Differentiability of the sub-Lorentzian distance function”, J. Dynam. Control Systems, 9:4 (2003), 531–547 | DOI | MR | Zbl
[4] M. Grochowski, “Reachable sets for the Heisenberg sub-Lorentzian structure on $\mathbb{R}^3$. An estimate for the distance function”, J. Dyn. Control Syst., 12:2 (2006), 145–160 | DOI | MR | Zbl
[5] M. Grochowski, “On the Heisenberg sub-Lorentzian metric on $\mathbb R^3$”, Geometric singularity theory, Banach Center Publ., 65, Polish Acad. Sci. Inst. Math., Warsaw, 2004, 57–65 | DOI | MR | Zbl
[6] A. Korolko, I. Markina, “Nonholonomic Lorentzian geometry on some $\mathbb{H}$-type groups”, J. Geom. Anal., 19:4 (2009), 864–889 | DOI | MR | Zbl
[7] E. Cartan, “Sur quelques quadratures dont l'élément différentiel contient des fonctions arbitraires”, Bull. Soc. Math. France, 29 (1901), 118–130 | DOI | MR | Zbl
[8] A. A. Ardentov, Yu. L. Sachkov, “Extremal trajectories in a nilpotent sub-Riemannian problem on the Engel group”, Sb. Math., 202:11 (2011), 1593–1615 | DOI | DOI | MR | Zbl
[9] A. A. Ardentov, Yu. L. Sachkov, “Conjugate points in nilpotent sub-Riemannian problem on the Engel group”, J. Math. Sci. (N. Y.), 195:3 (2013), 369–390 | DOI | MR | Zbl
[10] A. A. Ardentov, Yu. L. Sachkov, “Cut time in sub-Riemannian problem on Engel group”, ESAIM Control Optim. Calc. Var., 21:4 (2015), 958–988 | DOI | MR | Zbl
[11] Qihui Cai, Tiren Huang, Yu. L. Sachkov, Xiaoping Yang, “Geodesics in the Engel group with a sub-Lorentzian metric”, J. Dyn. Control Syst., 22:3 (2016), 465–483 | DOI | MR | Zbl
[12] B. O'Neill, Semi-Riemannian geometry. With applications to relativity, Pure Appl. Math., 103, Academic Press, Inc., New York, 1983, xiii+468 pp. | MR | Zbl
[13] J. K. Beem, P. E. Ehrlich, K. L. Easley, Global Lorentzian geometry, Monogr. Textbooks Pure Appl. Math., 202, 2nd ed., Marcel Dekker, Inc., New York, 1996, xiv+635 pp. | MR | Zbl
[14] N. I. Akhiezer, Elements of the theory of elliptic functions, Transl. Math. Monogr., 79, Amer. Math. Soc., Providence, RI, 1990, viii+237 pp. | MR | MR | Zbl | Zbl
[15] Yu. L. Sachkov, “Maxwell strata in Euler elastic problem”, J. Dyn. Control Syst., 14:2 (2008), 169–234 | DOI | MR | Zbl
[16] Yu. L. Sachkov, “Maxwell strata and symmetries in the problem of optimal rolling of a sphere over a plane”, Sb. Math., 201:7 (2010), 1029–1051 | DOI | DOI | MR | Zbl
[17] I. Moiseev, Yu. L. Sachkov, “Maxwell strata in sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:2 (2010), 380–399 | DOI | MR | Zbl