Universal series and subsequences of functions
Sbornik. Mathematics, Tome 209 (2018) no. 10, pp. 1498-1532

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions for the existence of a universal series in any system of measurable functions are established. It is proved that if there exists a universal series in a system $\Phi$, then there exists a universal series in this system such that, for any measurable function $f(x)$, there exists a subsequence of partial sums $S_{m_k}(x)$ converging to $f(x)$ almost everywhere and such that the upper density of the subsequence of indices $(m_k)_{k=1}^{\infty}$ is $1$. Questions on the density of $(m_k)_{k=1}^{\infty}$ are also examined for general almost everywhere convergent subsequences of measurable functions $(U_{m_k}(x))_{k=1}^{\infty}$. Bibliography: 7 titles.
Keywords: system of measurable functions, universal series, density of a subsequence of natural numbers, upper density, lower density.
@article{SM_2018_209_10_a4,
     author = {Sh. T. Tetunashvili},
     title = {Universal series and subsequences of functions},
     journal = {Sbornik. Mathematics},
     pages = {1498--1532},
     publisher = {mathdoc},
     volume = {209},
     number = {10},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_10_a4/}
}
TY  - JOUR
AU  - Sh. T. Tetunashvili
TI  - Universal series and subsequences of functions
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1498
EP  - 1532
VL  - 209
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_10_a4/
LA  - en
ID  - SM_2018_209_10_a4
ER  - 
%0 Journal Article
%A Sh. T. Tetunashvili
%T Universal series and subsequences of functions
%J Sbornik. Mathematics
%D 2018
%P 1498-1532
%V 209
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_10_a4/
%G en
%F SM_2018_209_10_a4
Sh. T. Tetunashvili. Universal series and subsequences of functions. Sbornik. Mathematics, Tome 209 (2018) no. 10, pp. 1498-1532. http://geodesic.mathdoc.fr/item/SM_2018_209_10_a4/