On discrete values of bilinear forms
Sbornik. Mathematics, Tome 209 (2018) no. 10, pp. 1482-1497
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\omega$ be a nondegenerate skew-symmetric bilinear form in the real plane. We prove that for finite a point set $P\subset \mathbb R^2\setminus\{0\}$, the set $T_\omega(P)$ of nonzero values of $\omega$ on $P\times P$, if nonempty, has cardinality $\Omega(N^{96/137})$.
In the special case when $P=A\times A$, where $A$ is a set of at least two reals, we establish the following sum-product type estimates, corresponding to the symmetric and skew-symmetric form $\omega$:
$$
|AA+ AA|= \Omega(|A|^{19/12})
\quad\text{and}\quad
|AA-AA|= \Omega\biggl( \frac{|A|^{49/32}}{\log^{3/32}|A|}\biggr).
$$
These estimates improve their basic prototypes $\Omega(N^{2/3})$ and $\Omega(|A|^{3/2})$, which readily follow from the Szemerédi-Trotter theorem.
Bibliography: 28 titles.
Keywords:
Erdős problems, sum-product estimates, cross-ratio.
@article{SM_2018_209_10_a3,
author = {A. Iosevich and O. Roche-Newton and M. Rudnev},
title = {On discrete values of bilinear forms},
journal = {Sbornik. Mathematics},
pages = {1482--1497},
publisher = {mathdoc},
volume = {209},
number = {10},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_10_a3/}
}
A. Iosevich; O. Roche-Newton; M. Rudnev. On discrete values of bilinear forms. Sbornik. Mathematics, Tome 209 (2018) no. 10, pp. 1482-1497. http://geodesic.mathdoc.fr/item/SM_2018_209_10_a3/