On discrete values of bilinear forms
Sbornik. Mathematics, Tome 209 (2018) no. 10, pp. 1482-1497

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\omega$ be a nondegenerate skew-symmetric bilinear form in the real plane. We prove that for finite a point set $P\subset \mathbb R^2\setminus\{0\}$, the set $T_\omega(P)$ of nonzero values of $\omega$ on $P\times P$, if nonempty, has cardinality $\Omega(N^{96/137})$. In the special case when $P=A\times A$, where $A$ is a set of at least two reals, we establish the following sum-product type estimates, corresponding to the symmetric and skew-symmetric form $\omega$: $$ |AA+ AA|= \Omega(|A|^{19/12}) \quad\text{and}\quad |AA-AA|= \Omega\biggl( \frac{|A|^{49/32}}{\log^{3/32}|A|}\biggr). $$ These estimates improve their basic prototypes $\Omega(N^{2/3})$ and $\Omega(|A|^{3/2})$, which readily follow from the Szemerédi-Trotter theorem. Bibliography: 28 titles.
Keywords: Erdős problems, sum-product estimates, cross-ratio.
@article{SM_2018_209_10_a3,
     author = {A. Iosevich and O. Roche-Newton and M. Rudnev},
     title = {On discrete values of bilinear forms},
     journal = {Sbornik. Mathematics},
     pages = {1482--1497},
     publisher = {mathdoc},
     volume = {209},
     number = {10},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_10_a3/}
}
TY  - JOUR
AU  - A. Iosevich
AU  - O. Roche-Newton
AU  - M. Rudnev
TI  - On discrete values of bilinear forms
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1482
EP  - 1497
VL  - 209
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_10_a3/
LA  - en
ID  - SM_2018_209_10_a3
ER  - 
%0 Journal Article
%A A. Iosevich
%A O. Roche-Newton
%A M. Rudnev
%T On discrete values of bilinear forms
%J Sbornik. Mathematics
%D 2018
%P 1482-1497
%V 209
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_10_a3/
%G en
%F SM_2018_209_10_a3
A. Iosevich; O. Roche-Newton; M. Rudnev. On discrete values of bilinear forms. Sbornik. Mathematics, Tome 209 (2018) no. 10, pp. 1482-1497. http://geodesic.mathdoc.fr/item/SM_2018_209_10_a3/