On the existence of a~basis in a~complemented subspace of a~nuclear K\"othe space from class~$(d_1)$
Sbornik. Mathematics, Tome 209 (2018) no. 10, pp. 1463-1481
Voir la notice de l'article provenant de la source Math-Net.Ru
A proof is presented that an arbitrary complemented subspace of a Köthe nuclear space from class $(d_1)$ has a basis, provided that the relevant Köthe matrix is regular in the sense of Dragilev. It is also shown that each such subspace must have a basis that is quasi-equivalent to a part of the canonical unit-vector basis.
Bibliography: 21 titles.
Keywords:
basis, Köthe nuclear spaces, complemented subspaces.
Mots-clés : Pelczyński's conjecture
Mots-clés : Pelczyński's conjecture
@article{SM_2018_209_10_a2,
author = {A. K. Dronov and V. M. Kaplitskii},
title = {On the existence of a~basis in a~complemented subspace of a~nuclear {K\"othe} space from class~$(d_1)$},
journal = {Sbornik. Mathematics},
pages = {1463--1481},
publisher = {mathdoc},
volume = {209},
number = {10},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_10_a2/}
}
TY - JOUR AU - A. K. Dronov AU - V. M. Kaplitskii TI - On the existence of a~basis in a~complemented subspace of a~nuclear K\"othe space from class~$(d_1)$ JO - Sbornik. Mathematics PY - 2018 SP - 1463 EP - 1481 VL - 209 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2018_209_10_a2/ LA - en ID - SM_2018_209_10_a2 ER -
%0 Journal Article %A A. K. Dronov %A V. M. Kaplitskii %T On the existence of a~basis in a~complemented subspace of a~nuclear K\"othe space from class~$(d_1)$ %J Sbornik. Mathematics %D 2018 %P 1463-1481 %V 209 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2018_209_10_a2/ %G en %F SM_2018_209_10_a2
A. K. Dronov; V. M. Kaplitskii. On the existence of a~basis in a~complemented subspace of a~nuclear K\"othe space from class~$(d_1)$. Sbornik. Mathematics, Tome 209 (2018) no. 10, pp. 1463-1481. http://geodesic.mathdoc.fr/item/SM_2018_209_10_a2/