On the existence of a~basis in a~complemented subspace of a~nuclear K\"othe space from class~$(d_1)$
Sbornik. Mathematics, Tome 209 (2018) no. 10, pp. 1463-1481

Voir la notice de l'article provenant de la source Math-Net.Ru

A proof is presented that an arbitrary complemented subspace of a Köthe nuclear space from class $(d_1)$ has a basis, provided that the relevant Köthe matrix is regular in the sense of Dragilev. It is also shown that each such subspace must have a basis that is quasi-equivalent to a part of the canonical unit-vector basis. Bibliography: 21 titles.
Keywords: basis, Köthe nuclear spaces, complemented subspaces.
Mots-clés : Pelczyński's conjecture
@article{SM_2018_209_10_a2,
     author = {A. K. Dronov and V. M. Kaplitskii},
     title = {On the existence of a~basis in a~complemented subspace of a~nuclear {K\"othe} space from class~$(d_1)$},
     journal = {Sbornik. Mathematics},
     pages = {1463--1481},
     publisher = {mathdoc},
     volume = {209},
     number = {10},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_10_a2/}
}
TY  - JOUR
AU  - A. K. Dronov
AU  - V. M. Kaplitskii
TI  - On the existence of a~basis in a~complemented subspace of a~nuclear K\"othe space from class~$(d_1)$
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1463
EP  - 1481
VL  - 209
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_10_a2/
LA  - en
ID  - SM_2018_209_10_a2
ER  - 
%0 Journal Article
%A A. K. Dronov
%A V. M. Kaplitskii
%T On the existence of a~basis in a~complemented subspace of a~nuclear K\"othe space from class~$(d_1)$
%J Sbornik. Mathematics
%D 2018
%P 1463-1481
%V 209
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_10_a2/
%G en
%F SM_2018_209_10_a2
A. K. Dronov; V. M. Kaplitskii. On the existence of a~basis in a~complemented subspace of a~nuclear K\"othe space from class~$(d_1)$. Sbornik. Mathematics, Tome 209 (2018) no. 10, pp. 1463-1481. http://geodesic.mathdoc.fr/item/SM_2018_209_10_a2/