On the existence of a basis in a complemented subspace of a nuclear Köthe space from class $(d_1)$
Sbornik. Mathematics, Tome 209 (2018) no. 10, pp. 1463-1481 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A proof is presented that an arbitrary complemented subspace of a Köthe nuclear space from class $(d_1)$ has a basis, provided that the relevant Köthe matrix is regular in the sense of Dragilev. It is also shown that each such subspace must have a basis that is quasi-equivalent to a part of the canonical unit-vector basis. Bibliography: 21 titles.
Keywords: basis, Köthe nuclear spaces, Pelczyński's conjecture, complemented subspaces.
@article{SM_2018_209_10_a2,
     author = {A. K. Dronov and V. M. Kaplitskii},
     title = {On the existence of a~basis in a~complemented subspace of a~nuclear {K\"othe} space from class~$(d_1)$},
     journal = {Sbornik. Mathematics},
     pages = {1463--1481},
     year = {2018},
     volume = {209},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_10_a2/}
}
TY  - JOUR
AU  - A. K. Dronov
AU  - V. M. Kaplitskii
TI  - On the existence of a basis in a complemented subspace of a nuclear Köthe space from class $(d_1)$
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1463
EP  - 1481
VL  - 209
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_10_a2/
LA  - en
ID  - SM_2018_209_10_a2
ER  - 
%0 Journal Article
%A A. K. Dronov
%A V. M. Kaplitskii
%T On the existence of a basis in a complemented subspace of a nuclear Köthe space from class $(d_1)$
%J Sbornik. Mathematics
%D 2018
%P 1463-1481
%V 209
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2018_209_10_a2/
%G en
%F SM_2018_209_10_a2
A. K. Dronov; V. M. Kaplitskii. On the existence of a basis in a complemented subspace of a nuclear Köthe space from class $(d_1)$. Sbornik. Mathematics, Tome 209 (2018) no. 10, pp. 1463-1481. http://geodesic.mathdoc.fr/item/SM_2018_209_10_a2/

[1] A. Pelczyński, “Problem 37”, Studia Math., 38 (1970), 476

[2] B. S. Mityagin, G. M. Henkin, “Linear problems of complex analysis”, Russian Math. Surveys, 26:4 (1971), 99–164 | DOI | MR | Zbl

[3] D. Vogt, “Ein Isomorphiesatz für Potenzreihenräume”, Arch. Math. (Basel), 38 (1982), 540–548 | DOI | MR | Zbl

[4] V. P. Kondakov, “On operators and complemented subspaces in the Köthe spaces determined by sparse matrices”, Siberian Math. J., 36:5 (1995), 943–957 | DOI | MR | Zbl

[5] V. P. Kondakov, “Geometric properties of Fréchet spaces and selection of basis sequences”, Math. Notes, 66:1 (1999), 82–88 | DOI | DOI | MR | Zbl

[6] V. P. Kondakov, “Remarks on the existence of unconditional bases for weighted countably-Hilbert spaces and their complemented subspaces”, Siberian Math. J., 42:6 (2001), 1082–1092 | DOI | MR | Zbl

[7] V. P. Kondakov, A. I. Efimov, “O klassakh prostranstv Kete, v kotorykh kazhdoe dopolnyaemoe podprostranstvo imeet bazis”, Vladikavk. matem. zhurn., 10:2 (2008), 21–29 | MR | Zbl

[8] V. P. Kondakov, A. I. Efimov, “O dvukh klassakh Kete–Freshe, v kotorykh kazhdoe dopolnyaemoe podprostranstvo imeet bazis”, Vladkavk. matem. zhurn., 5:4 (2003), 50–62 | MR | Zbl

[9] V. P. Kondakov, Voprosy geometrii nenormiruemykh prostranstv, Izd-vo Rostovskogo un-ta, Rostov-na-Donu, 1983, 72 pp. | MR | Zbl

[10] M. M. Dragilev, “On regular bases in nuclear spaces”, Amer. Math. Soc. Transl. Ser. 2, 93, Amer. Math. Soc., Providence, RI, 1970, 61–82 | MR | Zbl

[11] V. M. Kaplitskii, A. K. Dronov, “To the theory of operators that are bounded on cones in weighted spaces of numerical sequences”, J. Math. Sci. (N. Y.), 209:5 (2015), 761–777 | DOI | MR | Zbl

[12] V. I. Bogachev, O. G. Smolyanov, Topological vector spaces and their applications, Springer Monogr. Math., Springer, Cham, 2017, x+456 pp. | DOI | MR | Zbl

[13] R. Meise, D. Vogt, Introduction to functional analysis, Transl. from the German, Oxf. Grad. Texts Math., 2, Clarendon Press, Oxford Univ. Press, New York, 1997, x+437 pp. | MR | Zbl

[14] B. S. Mityagin, “Approximate dimension and bases in nuclear spaces”, Russian Math. Surveys, 16:4 (1961), 59–127 | DOI | MR | Zbl

[15] M. M. Dragilev, Bazisy v prostranstvakh Kete, Izd-vo Rostovskogo un-ta, Rostov-na-Donu, 1983, 144 pp. | Zbl

[16] B. Z. Vulikh, Introduction to the theory of partially ordered spaces, Wolters-Noordhoff Scientific Publications Ltd., Groningen, 1967, xv+387 pp. | MR | MR | Zbl | Zbl

[17] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Grundlehren Math. Wiss., 223, Springer-Verlag, Berlin–New York, 1976, x+207 pp. | MR | MR | Zbl

[18] S. G. Kreĭn, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, Transl. Math. Monogr., 54, Amer. Math. Soc., Providence, RI, 1982, xii+375 pp. | MR | MR | Zbl | Zbl

[19] H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 528 pp. | MR | MR | Zbl | Zbl

[20] V. P. Kondakov, Tri osnovnykh printsipa lineinogo funktsionalnogo analiza, ikh obobscheniya i prilozheniya, VNTs RAN, Rostov-na-Donu–Vladikavkaz, 2007, 208 pp.

[21] A. Pietsch, Nukleare lokalkonvexe Räume, Schriftenreihe der Institute für Mathematik bei der Deutschen Akademie der Wissenschaften zu Berlin. Reihe A, Reine Mathematik, 1, Akademie-Verlag, Berlin, 1965, viii+1 pp. | MR | MR | Zbl | Zbl