@article{SM_2018_209_10_a1,
author = {E. S. Gorskaya and I. M. Mitricheva},
title = {The chromatic number of the space $(\mathbb R^n, l_1)$},
journal = {Sbornik. Mathematics},
pages = {1445--1462},
year = {2018},
volume = {209},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_10_a1/}
}
E. S. Gorskaya; I. M. Mitricheva. The chromatic number of the space $(\mathbb R^n, l_1)$. Sbornik. Mathematics, Tome 209 (2018) no. 10, pp. 1445-1462. http://geodesic.mathdoc.fr/item/SM_2018_209_10_a1/
[1] H. Hadwiger, “Ungelöste Probleme No 40”, Elemente der Math., 16 (1961), 103–104
[2] P. Erdös, “Some unsolved problems”, Magyar Tud. Akad. Mat. Kutató Int. Közl., 6 (1961), 221–254 | MR | Zbl
[3] P. Erdös, “On some problems of elementary and combinatorial geometry”, Ann. Mat. Pura Appl. (4), 103 (1975), 99–108 | DOI | MR | Zbl
[4] M. Gardner, “Mathematical games”, Sci. Amer., 203 (1960), 172–180 | DOI
[5] L. Moser, W. Moser, “Solution to problem $10$”, Canad. Math. Bull., 4 (1961), 187–189
[6] A. Yu. Soifer, “Khromaticheskoe chislo ploskosti: ego proshloe, nastoyaschee i buduschee”, Matem. prosv., ser. 3, 8, MTsNMO, M., 2004, 186–221
[7] M. Benda, M. Perles, “Colorings of metric spaces”, Geombinatorics, 9:3 (2000), 113–126 | MR | Zbl
[8] A. M. Raigorodskii, “Borsuk's problem and the chromatic numbers of some metric spaces”, Russian Math. Surveys, 56:1 (2001), 103–139 | DOI | DOI | MR | Zbl
[9] D. E. Raiskii, “Realization of all distances in a decomposition of the space $R^n$ into $n+1$ parts”, Math. Notes, 7:3 (1970), 194–196 | DOI | MR | Zbl
[10] D. G. Larman, C. A. Rogers, “The realization of distances within sets in Euclidean space”, Mathematika, 19 (1972), 1–24 | DOI | MR | Zbl
[11] P. Frankl, R. M. Wilson, “Intersection theorems with geometric consequences”, Combinatorica, 1:4 (1981), 357–368 | DOI | MR | Zbl
[12] N. G. Moshchevitin, A. M. Raigorodskii, “Colorings of the space $\mathbb R^n$ with several forbidden distances”, Math. Notes, 81:5 (2007), 656–664 | DOI | DOI | MR | Zbl
[13] A. M. Raigorodskii, “The chromatic number of a space with the metric $l_q$”, Russian Math. Surveys, 59:5 (2004), 973–975 | DOI | DOI | MR | Zbl
[14] E. S. Gorskaya, I. M. Mitricheva, V. Yu. Protasov, A. M. Raigorodskii, “Estimating the chromatic numbers of Euclidean space by convex minimization methods”, Sb. Math., 200:6 (2009), 783–801 | DOI | DOI | MR | Zbl
[15] A. M. Raigorodskii, “O khromaticheskikh chislakh metricheskikh prostranstv”, Chebyshevskii sb., 5:1(9) (2004), 165–173 | MR | Zbl
[16] Z. Füredi, Jeong-Hyun Kang, “Distance graph on $ {\mathbb Z}^n $ with $ \ell_1 $-norm”, Theoret. Comput. Sci., 319:1-3 (2004), 357–366 | DOI | MR | Zbl
[17] I. M. Shitova, “On the chromatic number of a space with several forbidden distances”, Dokl. Math., 75:2 (2007), 228–230 | DOI | MR | Zbl
[18] A. M. Raigorodskii, I. M. Shitova, “Chromatic numbers of real and rational spaces with real or rational forbidden distances”, Sb. Math., 199:4 (2008), 579–612 | DOI | DOI | MR | Zbl
[19] F. Harary, Graph theory, Addison-Wesley Publishing Co., Reading, MA–Menlo Park, CA–London, 1969, ix+274 pp. | MR | MR | Zbl | Zbl
[20] N. G. de Bruijn, P. Erdős, “A colour problem for infinite graphs and a problem in the theory of relations”, Nederl. Akad. Wetensch. Proc. Ser. A, 54, = Indagationes Math., 13 (1951), 371–373 | MR | Zbl
[21] N. Alon, J. H. Spencer, The probabilistic method, Wiley-Intersci. Ser. Discrete Math. Optim., 2nd ed., Wiley-Interscience [John Wiley Sons], New York, 2000, xviii+301 pp. | DOI | MR | Zbl
[22] L. Babai, P. Frankl, Linear algebra methods in combinatorics, Part 1, Preliminary version 2, Department of Computer Science, Univ. of Chicago, 1992
[23] A. M. Raigorodskii, Lineino-algebraicheskii metod v kombinatorike, MTsNMO, M., 2007, 138 pp. | Zbl
[24] R. C. Baker, G. Harman, J. Pintz, “The difference between consecutive primes. II”, Proc. London Math. Soc. (3), 83:3 (2001), 532–562 | DOI | MR | Zbl
[25] Y. Nesterov, A. Nemirovskii, Interior-point polynomial algorithms in convex programming, SIAM Stud. Appl. Math., 13, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994, x+405 pp. | DOI | MR | Zbl
[26] S. Boyd, L. Vandenberghe, Convex optimization, Cambridge Univ. Press, Cambridge, 2004, xiv+716 pp. | DOI | MR | Zbl
[27] G. G. Magaril-Il'yaev, V. M. Tikhomirov, Convex analysis: theory and applications, Transl. Math. Monogr., 222, Amer. Math. Soc., Providence, RI, 2003, viii+183 pp. | MR | Zbl