Mots-clés : logarithmic Gauss map.
@article{SM_2018_209_10_a0,
author = {I. A. Antipova and E. N. Mikhalkin and A. K. Tsikh},
title = {Rational expressions for multiple roots of algebraic equations},
journal = {Sbornik. Mathematics},
pages = {1419--1444},
year = {2018},
volume = {209},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_10_a0/}
}
TY - JOUR AU - I. A. Antipova AU - E. N. Mikhalkin AU - A. K. Tsikh TI - Rational expressions for multiple roots of algebraic equations JO - Sbornik. Mathematics PY - 2018 SP - 1419 EP - 1444 VL - 209 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_2018_209_10_a0/ LA - en ID - SM_2018_209_10_a0 ER -
I. A. Antipova; E. N. Mikhalkin; A. K. Tsikh. Rational expressions for multiple roots of algebraic equations. Sbornik. Mathematics, Tome 209 (2018) no. 10, pp. 1419-1444. http://geodesic.mathdoc.fr/item/SM_2018_209_10_a0/
[1] I. M. Gel'fand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., Boston, MA, 1994, x+523 pp. | DOI | MR | Zbl
[2] D. Hilbert, “Ueber die Singularitäten der Diskriminantenfläche”, Math. Ann., 30:4 (1887), 437–441 | DOI | MR | Zbl
[3] S. Kurmann, “Some remarks on equations defining coincident root loci”, J. Algebra, 352 (2012), 223–231 | DOI | MR | Zbl
[4] J. Weyman, “The equations of strata for binary forms”, J. Algebra, 122:1 (1989), 244–249 | DOI | MR | Zbl
[5] H. Lee, B. Sturmfels, “Duality of multiple root loci”, J. Algebra, 446 (2016), 499–526 | DOI | MR | Zbl
[6] G. Katz, “How tangents solve algebraic equations, or a remarkable geometry of discriminant varieties”, Expo. Math., 21:3 (2003), 219–261 | DOI | MR | Zbl
[7] E. N. Mikhalkin, A. K. Tsikh, “Singular strata of cuspidal type for the classical discriminant”, Sb. Math., 206:2 (2015), 282–310 | DOI | DOI | MR | Zbl
[8] K. Oka, “Sur les fonctions analytiques de plusieurs variables. VIII. Lemme fundamental”, J. Math. Soc. Japan, 1951, no. 3, 204–214 | DOI | MR | Zbl
[9] I. A. Antipova, A. K. Tsikh, “The discriminant locus of a system of $n$ Laurent polynomials in $n$ variables”, Izv. Math., 76:5 (2012), 881–906 | DOI | DOI | MR | Zbl
[10] A. Esterov, “The discriminant of a system of equations”, Adv. Math., 245 (2013), 534–572 | DOI | MR | Zbl
[11] T. M. Sadykov, A. K. Tsikh, Gipergeometricheskie i algebraicheskie funktsii mnogikh peremennykh, Nauka, M., 2014, 408 pp.
[12] Ch. W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras, Pure Appl. Math., 11, Interscience Publishers (John Wiley Sons), New York–London, 1962, xiv+685 pp. | MR | MR | Zbl
[13] G. Mikhalkin, “Real algebraic curves, the moment map and amoebas”, Ann. of Math. (2), 151:1 (2000), 309–326 | DOI | MR | Zbl
[14] M. M. Kapranov, “A characterization of $A$-discriminantal hypersurfaces in terms of the logarithmic Gauss map”, Math. Ann., 290:2 (1991), 277–285 | DOI | MR | Zbl
[15] M. Passare, A. Tsikh, “Algebraic equations and hypergeometric series”, The legacy of Niels Henrik Abel, Springer, Berlin, 2004, 653–672 | MR | Zbl
[16] R. Birkeland, “Über die Auflösung algebraischer Gleichungen durch hypergeometrische Funktionen”, Math. Z., 1927, no. 26, 566–578 | DOI | MR | Zbl
[17] E. N. Mikhalkin, “The monodromy of a general algebraic function”, Siberian Math. J., 56:2 (2015), 330–338 | DOI | MR | Zbl
[18] E. N. Mikhalkin, “On solving general algebraic equations by integrals of elementary functions”, Siberian Math. J., 47:2 (2006), 301–306 | DOI | MR | Zbl
[19] V. R. Kulikov, V. A. Stepanenko, “On solutions and Waring's formulas for the systems of $n$ algebraic equations for $n$ unknowns”, St. Petersburg Math. J., 26:5 (2015), 839–848 | DOI | MR | Zbl
[20] Hj. Mellin, “Résolution de l'équation algébrique générale à l'aide de la fonction gamma”, C. R. Acad. Sci. Paris Sér. I Math., 172 (1921), 658–661 | Zbl