Minimal cubic surfaces over finite fields
Sbornik. Mathematics, Tome 208 (2017) no. 9, pp. 1399-1419

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a minimal cubic surface over a finite field $\mathbb{F}_q$. The image $\Gamma$ of the Galois group $\operatorname{Gal}(\overline{\mathbb{F}}_q / \mathbb{F}_q)$ in the group $\operatorname{Aut}(\operatorname{Pic}(\overline{X}))$ is a cyclic subgroup of the Weyl group $W(E_6)$. There are $25$ conjugacy classes of cyclic subgroups in $W(E_6)$, and five of them correspond to minimal cubic surfaces. It is natural to ask which conjugacy classes come from minimal cubic surfaces over a given finite field. In this paper we give a partial answer to this question and present many explicit examples. Bibliography: 11 titles.
Keywords: finite field, cubic surface, zeta function
Mots-clés : del Pezzo surface.
@article{SM_2017_208_9_a6,
     author = {S. Yu. Rybakov and A. S. Trepalin},
     title = {Minimal cubic surfaces over finite fields},
     journal = {Sbornik. Mathematics},
     pages = {1399--1419},
     publisher = {mathdoc},
     volume = {208},
     number = {9},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_9_a6/}
}
TY  - JOUR
AU  - S. Yu. Rybakov
AU  - A. S. Trepalin
TI  - Minimal cubic surfaces over finite fields
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1399
EP  - 1419
VL  - 208
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_9_a6/
LA  - en
ID  - SM_2017_208_9_a6
ER  - 
%0 Journal Article
%A S. Yu. Rybakov
%A A. S. Trepalin
%T Minimal cubic surfaces over finite fields
%J Sbornik. Mathematics
%D 2017
%P 1399-1419
%V 208
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_9_a6/
%G en
%F SM_2017_208_9_a6
S. Yu. Rybakov; A. S. Trepalin. Minimal cubic surfaces over finite fields. Sbornik. Mathematics, Tome 208 (2017) no. 9, pp. 1399-1419. http://geodesic.mathdoc.fr/item/SM_2017_208_9_a6/