Exceptional collections in surface-like categories
Sbornik. Mathematics, Tome 208 (2017) no. 9, pp. 1368-1398 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We provide a categorical framework for recent results of Markus Perling's on the combinatorics of exceptional collections on numerically rational surfaces. Using it we simplify and generalize some of Perling's results as well as Vial's criterion for the existence of a numerical exceptional collection. Bibliography: 18 titles.
Keywords: surface-like pseudolattices, toric systems.
Mots-clés : exceptional collections, mutations
@article{SM_2017_208_9_a5,
     author = {A. G. Kuznetsov},
     title = {Exceptional collections in surface-like categories},
     journal = {Sbornik. Mathematics},
     pages = {1368--1398},
     year = {2017},
     volume = {208},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_9_a5/}
}
TY  - JOUR
AU  - A. G. Kuznetsov
TI  - Exceptional collections in surface-like categories
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1368
EP  - 1398
VL  - 208
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_9_a5/
LA  - en
ID  - SM_2017_208_9_a5
ER  - 
%0 Journal Article
%A A. G. Kuznetsov
%T Exceptional collections in surface-like categories
%J Sbornik. Mathematics
%D 2017
%P 1368-1398
%V 208
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2017_208_9_a5/
%G en
%F SM_2017_208_9_a5
A. G. Kuznetsov. Exceptional collections in surface-like categories. Sbornik. Mathematics, Tome 208 (2017) no. 9, pp. 1368-1398. http://geodesic.mathdoc.fr/item/SM_2017_208_9_a5/

[1] M. Perling, “Combinatorial aspects of exceptional sequences on (rational) surfaces”, Math. Z. (to appear) , first online 2017 | DOI

[2] Ch. Vial, “Exceptional collections, and the Néron–Severi lattice for surfaces”, Adv. Math., 305 (2017), 895–934 | DOI | MR | Zbl

[3] S. Gorchinskiy, “Integral Chow motives of threefolds with $K$-motives of unit type”, Bull. Korean Math. Soc., 2017 (to appear) ; arXiv: 1703.06977 | DOI

[4] L. de Thanhoffer de Volcsey, M. Van den Bergh, On an analogue of the Markov equation for exceptional collections of length $4$, arXiv: 1607.04246

[5] P. Belmans, T. Raedschelders, “Embeddings of algebras in derived categories of surfaces”, Proc. Amer. Math. Soc., 145:7 (2017), 2757–2770 ; arXiv: 1501.04197v3 | DOI | MR | Zbl

[6] A. Kapustin, A. Kuznetsov, D. Orlov, “Noncommutative instantons and twistor transform”, Comm. Math. Phys., 221:2 (2001), 385–432 | DOI | MR | Zbl

[7] D. O. Orlov, “Geometric realizations of quiver algebras”, Proc. Steklov Inst. Math., 290:1 (2015), 70–83 | DOI | DOI | MR | Zbl

[8] P. Belmans, T. Raedschelders, Noncommutative quadrics and Hilbert schemes of points, arXiv: 1605.02795

[9] A. Kuznetsov, V. A. Lunts, “Categorical resolutions of irrational singularities”, Int. Math. Res. Not. IMRN, 2015:13 (2015), 4536–4625 | DOI | MR | Zbl

[10] D. Orlov, “Smooth and proper noncommutative schemes and gluing of DG categories”, Adv. Math., 302 (2016), 59–105 | DOI | MR | Zbl

[11] D. O. Orlov, “Gluing of categories and Krull–Schmidt partners”, Russian Math. Surveys, 71:3 (2016), 594–596 | DOI | DOI | MR | Zbl

[12] D. Huybrechts, P. Stellari, “Equivalences of twisted K3 surfaces”, Math. Ann., 332:4 (2005), 901–936 | DOI | MR | Zbl

[13] P. Belmans, D. Presotto, Construction of noncommutative surfaces with exceptional collections of length $4$, arXiv: 1705.06943

[14] L. de Thanhoffer de Völcsey, D. Presotto, Homological properties of a certain noncommutative Del Pezzo surface, arXiv: 1503.03992

[15] L. Hille, M. Perling, “Exceptional sequences of invertible sheaves on rational surfaces”, Compos. Math., 147:4 (2011), 1230–1280 | DOI | MR | Zbl

[16] P. Hacking, “Exceptional bundles associated to degenerations of surfaces”, Duke Math. J., 162:6 (2013), 1171–1202 | DOI | MR | Zbl

[17] M. Aigner, Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings, Springer, Cham, 2013, x+257 pp. | DOI | MR | Zbl

[18] J. W. Milnor, D. H. Husemoller, Symmetric bilinear forms, Ergeb. Math. Grenzgeb., 73, Springer-Verlag, New York–Heidelberg, 1973, viii+147 pp. | MR | Zbl