Discrete Morse theory for the moduli spaces of polygonal linkages, or solitaire on a~circle
Sbornik. Mathematics, Tome 208 (2017) no. 9, pp. 1353-1367
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct an exact discrete Morse function on the moduli space of a planar polygonal linkage. A cellular structure on the moduli space is used, and the number of cells is minimised by employing discrete Morse theory.
Bibliography: 12 entries.
Keywords:
polygonal linkage, cell complex, discrete vector field, exact Morse function.
Mots-clés : configuration space
Mots-clés : configuration space
@article{SM_2017_208_9_a4,
author = {A. M. Zhukova and G. Yu. Panina},
title = {Discrete {Morse} theory for the moduli spaces of polygonal linkages, or solitaire on a~circle},
journal = {Sbornik. Mathematics},
pages = {1353--1367},
publisher = {mathdoc},
volume = {208},
number = {9},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_9_a4/}
}
TY - JOUR AU - A. M. Zhukova AU - G. Yu. Panina TI - Discrete Morse theory for the moduli spaces of polygonal linkages, or solitaire on a~circle JO - Sbornik. Mathematics PY - 2017 SP - 1353 EP - 1367 VL - 208 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2017_208_9_a4/ LA - en ID - SM_2017_208_9_a4 ER -
A. M. Zhukova; G. Yu. Panina. Discrete Morse theory for the moduli spaces of polygonal linkages, or solitaire on a~circle. Sbornik. Mathematics, Tome 208 (2017) no. 9, pp. 1353-1367. http://geodesic.mathdoc.fr/item/SM_2017_208_9_a4/