Discrete Morse theory for the moduli spaces of polygonal linkages, or solitaire on a~circle
Sbornik. Mathematics, Tome 208 (2017) no. 9, pp. 1353-1367

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an exact discrete Morse function on the moduli space of a planar polygonal linkage. A cellular structure on the moduli space is used, and the number of cells is minimised by employing discrete Morse theory. Bibliography: 12 entries.
Keywords: polygonal linkage, cell complex, discrete vector field, exact Morse function.
Mots-clés : configuration space
@article{SM_2017_208_9_a4,
     author = {A. M. Zhukova and G. Yu. Panina},
     title = {Discrete {Morse} theory for the moduli spaces of polygonal linkages, or solitaire on a~circle},
     journal = {Sbornik. Mathematics},
     pages = {1353--1367},
     publisher = {mathdoc},
     volume = {208},
     number = {9},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_9_a4/}
}
TY  - JOUR
AU  - A. M. Zhukova
AU  - G. Yu. Panina
TI  - Discrete Morse theory for the moduli spaces of polygonal linkages, or solitaire on a~circle
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1353
EP  - 1367
VL  - 208
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_9_a4/
LA  - en
ID  - SM_2017_208_9_a4
ER  - 
%0 Journal Article
%A A. M. Zhukova
%A G. Yu. Panina
%T Discrete Morse theory for the moduli spaces of polygonal linkages, or solitaire on a~circle
%J Sbornik. Mathematics
%D 2017
%P 1353-1367
%V 208
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_9_a4/
%G en
%F SM_2017_208_9_a4
A. M. Zhukova; G. Yu. Panina. Discrete Morse theory for the moduli spaces of polygonal linkages, or solitaire on a~circle. Sbornik. Mathematics, Tome 208 (2017) no. 9, pp. 1353-1367. http://geodesic.mathdoc.fr/item/SM_2017_208_9_a4/