Mots-clés : configuration space
@article{SM_2017_208_9_a4,
author = {A. M. Zhukova and G. Yu. Panina},
title = {Discrete {Morse} theory for the moduli spaces of polygonal linkages, or solitaire on a~circle},
journal = {Sbornik. Mathematics},
pages = {1353--1367},
year = {2017},
volume = {208},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_9_a4/}
}
TY - JOUR AU - A. M. Zhukova AU - G. Yu. Panina TI - Discrete Morse theory for the moduli spaces of polygonal linkages, or solitaire on a circle JO - Sbornik. Mathematics PY - 2017 SP - 1353 EP - 1367 VL - 208 IS - 9 UR - http://geodesic.mathdoc.fr/item/SM_2017_208_9_a4/ LA - en ID - SM_2017_208_9_a4 ER -
A. M. Zhukova; G. Yu. Panina. Discrete Morse theory for the moduli spaces of polygonal linkages, or solitaire on a circle. Sbornik. Mathematics, Tome 208 (2017) no. 9, pp. 1353-1367. http://geodesic.mathdoc.fr/item/SM_2017_208_9_a4/
[1] M. Joswig, M. E. Pfetsch, “Computing optimal Morse matchings”, SIAM J. Discrete Math., 20:1 (2006), 11–25 | DOI | MR | Zbl
[2] B. A. Burton, T. Lewiner, J. Paixão, J. Spreer, “Parameterized complexity of discrete Morse theory”, Computational geometry (SoCG'13), ACM, New York, 2013, 127–136 | DOI | MR | Zbl
[3] G. Panina, Moduli space of a planar polygonal linkage: a combinatorial description, arXiv: 1209.3241
[4] J. Milnor, Lectures on the $h$-cobordism theorem, Princeton Univ. Press, Princeton, NJ, 1965, v+116 pp. | MR | Zbl
[5] P. Hersh, “On optimizing discrete Morse functions”, Adv. in Appl. Math., 35:3 (2005), 294–322 | DOI | MR | Zbl
[6] M. Farber, D. Schütz, “Homology of planar polygon spaces”, Geom. Dedicata, 125 (2007), 75–92 | DOI | MR | Zbl
[7] E. Babson, P. Hersh, “Discrete Morse functions from lexicographic orders”, Trans. Amer. Math. Soc., 357:2 (2005), 509–534 | DOI | MR | Zbl
[8] M. Farber, Invitation to topological robotics, Zur. Lect. Adv. Math., Eur. Math. Soc., Zürich, 2008, x+133 pp. | DOI | MR | Zbl
[9] M. Farber, J.-C. Hausmann, D. Schütz, “On the conjecture of Kevin Walker”, J. Topol. Anal., 1:1 (2009), 65–86 | DOI | MR | Zbl
[10] G. Yu. Panina, G. N. Khimshiashvili, “On the area of a polygonal linkage”, Dokl. Math., 85:1 (2012), 120–121 | DOI | MR | Zbl
[11] R. Forman, “A user's guide to discrete Morse theory”, Sém. Lothar. Combin., 48 (2002), B48c, 35 pp. | MR | Zbl
[12] R. Forman, “Morse theory for cell complexes”, Adv. Math., 134:1 (1998), 90–145 | DOI | MR | Zbl