Majorants for eigenvalues of Sturm-Liouville problems with potentials lying in balls of weighted spaces
Sbornik. Mathematics, Tome 208 (2017) no. 9, pp. 1298-1311

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem concerning an exact a priori majorant for the least eigenvalue of the Sturm-Liouville problem $$ -y''+qy=\lambda y,\qquad y(0)=y(1)=0 $$ with a condition of the form $\displaystyle\int_0^1 rq^\gamma\,dx\leqslant 1$ on the potential, where the weight $r\in C(0,1)$ is uniformly positive on the interval $(0,1)$. We give a constructive proof that this majorant is attainable for all $\gamma>1$ and, for a certain natural extension of the class of admissible potentials, also for $\gamma=1$. Bibliography: 9 titles.
Keywords: eigenvalue, Sobolev space.
Mots-clés : Sturm-Liouville problem
@article{SM_2017_208_9_a2,
     author = {A. A. Vladimirov},
     title = {Majorants for eigenvalues of {Sturm-Liouville} problems with potentials lying in balls of weighted spaces},
     journal = {Sbornik. Mathematics},
     pages = {1298--1311},
     publisher = {mathdoc},
     volume = {208},
     number = {9},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_9_a2/}
}
TY  - JOUR
AU  - A. A. Vladimirov
TI  - Majorants for eigenvalues of Sturm-Liouville problems with potentials lying in balls of weighted spaces
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1298
EP  - 1311
VL  - 208
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_9_a2/
LA  - en
ID  - SM_2017_208_9_a2
ER  - 
%0 Journal Article
%A A. A. Vladimirov
%T Majorants for eigenvalues of Sturm-Liouville problems with potentials lying in balls of weighted spaces
%J Sbornik. Mathematics
%D 2017
%P 1298-1311
%V 208
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_9_a2/
%G en
%F SM_2017_208_9_a2
A. A. Vladimirov. Majorants for eigenvalues of Sturm-Liouville problems with potentials lying in balls of weighted spaces. Sbornik. Mathematics, Tome 208 (2017) no. 9, pp. 1298-1311. http://geodesic.mathdoc.fr/item/SM_2017_208_9_a2/