@article{SM_2017_208_9_a1,
author = {D. V. Valovik},
title = {The spectral properties of some nonlinear operators of {Sturm-Liouville} type},
journal = {Sbornik. Mathematics},
pages = {1282--1297},
year = {2017},
volume = {208},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_9_a1/}
}
D. V. Valovik. The spectral properties of some nonlinear operators of Sturm-Liouville type. Sbornik. Mathematics, Tome 208 (2017) no. 9, pp. 1282-1297. http://geodesic.mathdoc.fr/item/SM_2017_208_9_a1/
[1] P. H. Rabinowitz, “A note on a nonlinear eigenvalue problem for a class of differential equations”, J. Differential Equations, 9:3 (1971), 536–548 | DOI | MR | Zbl
[2] H.-P. Heinz, “Nodal properties and variational characterizations of solutions to nonlinear Sturm–Liouville problems”, J. Differential Equations, 62:3 (1986), 299–333 | DOI | MR | Zbl
[3] A. Ambrosetti, P. H. Rabinowitz, “Dual variational methods in critical point theory and applications”, J. Functional Analysis, 14:4 (1973), 349–381 | DOI | MR | Zbl
[4] Z. Nehari, “Characteristic values associated with a class of nonlinear second-order differential equations”, Acta Math., 105:3-4 (1961), 141–175 | DOI | MR | Zbl
[5] Sturm–Liouville theory. Past and present (Geneva, 2003), eds. W. O. Amrein, A. M. Hinz, D. B. Pearson, Birkhäuser Verlag, Basel, 2005, xx+335 pp. | DOI | MR | Zbl
[6] P. H. Rabinowitz, “Some global results for nonlinear eigenvalue problems”, J. Functional Analysis, 7:3 (1971), 487–513 | DOI | MR | Zbl
[7] M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, A Pergamon Press Book The Macmillan Co., New York, 1964, xi+395 pp. | MR | MR | Zbl | Zbl
[8] M. M. Vainberg, V. A. Trenogin, Theory of branching of solutions of non-linear equations, Monogr. Textbooks Pure Appl. Math., Noordhoff International Publishing, Leyden, 1974, xxvi+485 pp. | MR | MR | Zbl | Zbl
[9] V. G. Osmolovskii, Nelineinaya zadacha Shturma–Liuvillya, Izd-vo SPb. un-ta, SPb., 2003, 230 pp.
[10] Bifurcation theory and nonlinear eigenvalue problems, eds. J. B. Keller, S. Antman, W. A. Benjamin, Inc., New York–Amsterdam, 1969, xiv+434 pp. | MR | Zbl | Zbl
[11] A. Özbekler, “Sturmian theory for second order differential equations with mixed nonlinearities”, Appl. Math. Comput., 259 (2015), 379–389 | DOI | MR
[12] M. Dosoudilová, A. Lomtatidze, J. Šremr, “Oscillatory properties of solutions to certain two-dimensional systems of non-linear ordinary differential equations”, Nonlinear Anal., 120 (2015), 57–75 | DOI | MR | Zbl
[13] E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen, v. I, Mathematik und ihre Anwendungen in Physik und Technik. Reihe A., 18, Gewöhnliche Differentialgleichungen, 6. Aufl., Akademische Verlagsgesellschaft, Geest Portig K.-G., Leipzig, 1959, xxvi+666 pp. | MR | MR | Zbl | Zbl
[14] P. E. Zhidkov, “Riesz basis property of the system of eigenfunctions for a non-linear problem of Sturm–Liouville type”, Sb. Math., 191:3 (2000), 359–368 | DOI | DOI | MR | Zbl
[15] R. E. L. Turner, “Nonlinear Sturm–Liouville problems”, J. Differential Equations, 10:1 (1971), 141–146 | DOI | MR | Zbl
[16] Yu. G. Smirnov, D. V. Valovik, “Guided electromagnetic waves propagating in a plane dielectric waveguide with nonlinear permittivity”, Phys. Rev. A (3), 91:1 (2015), 013840, 6 pp. | DOI | MR
[17] Yu. G. Smirnov, D. V. Valovik, “On the infinitely many nonperturbative solutions in a transmission eigenvalue problem for Maxwell's equations with cubic nonlinearity”, J. Math. Phys., 57:10 (2016), 103504, 15 pp. | DOI | MR | Zbl
[18] D. V. Valovik, “Integral dispersion equation method to solve a nonlinear boundary eigenvalue problem”, Nonlinear Anal. Real World Appl., 20 (2014), 52–58 | DOI | MR | Zbl
[19] V. M. Eleonskii, L. G. Oganes'yants, V. P. Silin, “Cylindrical nonlinear waveguides”, Soviet Phys. JETP, 35:1 (1972), 44–47
[20] A. D. Boardman, P. Egan, F. Lederer, U. Langbein, D. Mihalache, “Third-order nonlinear electromagnetic TE and TM guided waves”, Nonlinear surface electromagnetic phenomena, Modern Problems in Condensed Matter Sciences, 29, Elsevier, Amsterdam, 1991, 73–287 pp. | DOI
[21] Yu. G. Smirnov, E. Yu. Smol'kin, D. V. Valovik, “Nonlinear double-layer Bragg waveguide: analytical and numerical approaches to investigate waveguiding problem”, Adv. Numer. Anal., 2014 (2014), 231498, 11 pp. | DOI | MR | Zbl
[22] E. Yu. Smol'kin, D. V. Valovik, “Guided electromagnetic waves propagating in a two-layer cylindrical dielectric waveguide with inhomogeneous nonlinear permittivity”, Adv. Math. Phys., 2015 (2015), 614976, 11 pp. | DOI | MR | Zbl
[23] Y. R. Shen, The principles of nonlinear optics, John Wiley Sons, New York, 1984, 576 pp.
[24] L. D. Landau, E. M. Lifchitz, L. P. Pitaevskii, Course of theoretical physics, v. 8, Electrodynamics of continuous media, 2nd ed., rev. and enl., Butterworth-Heinemann, Oxford, 1993, xiii+460 pp. | MR | MR
[25] T. Cazenave, Semilinear Schrödinger equations, Courant Lect. Notes Math., 10, New York Univ., Courant Inst. Math. Sci., New York; Amer. Math. Soc., Providence, RI, 2003, xiv+323 pp. | DOI | MR | Zbl
[26] D. V. Valovik, V. Yu. Kurseeva, “On the eigenvalues of a nonlinear spectral problem”, Differ. Equ., 52:2 (2016), 149–156 | DOI | DOI | MR | Zbl
[27] I. G. Petrovskii, Ordinary differential equations, Selected Russian Publications in the Mathematical Sciences, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1966, x+232 pp. | MR | MR | Zbl | Zbl