Conditions for subharmonicity and subharmonic extensions of functions
Sbornik. Mathematics, Tome 208 (2017) no. 8, pp. 1225-1245 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the well-known local Blaschke-Privalov condition, which distinguishes the subharmonic functions in the set of real upper semicontinuous functions in a fixed Euclidean domain $G$ in terms of integral mean values over balls, can be replaced by other, a priori weaker, local conditions of this type on certain subsets of $G$. Both classical and new results on removable singularities of harmonic and subharmonic functions are obtained as consequences of the central theorem. Bibliography: 28 titles.
Keywords: subharmonic function, Blaschke-Privalov condition, inner Hausdorff measure, inner capacity, removable set.
@article{SM_2017_208_8_a6,
     author = {A. V. Pokrovskii},
     title = {Conditions for subharmonicity and subharmonic extensions of functions},
     journal = {Sbornik. Mathematics},
     pages = {1225--1245},
     year = {2017},
     volume = {208},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_8_a6/}
}
TY  - JOUR
AU  - A. V. Pokrovskii
TI  - Conditions for subharmonicity and subharmonic extensions of functions
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1225
EP  - 1245
VL  - 208
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_8_a6/
LA  - en
ID  - SM_2017_208_8_a6
ER  - 
%0 Journal Article
%A A. V. Pokrovskii
%T Conditions for subharmonicity and subharmonic extensions of functions
%J Sbornik. Mathematics
%D 2017
%P 1225-1245
%V 208
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2017_208_8_a6/
%G en
%F SM_2017_208_8_a6
A. V. Pokrovskii. Conditions for subharmonicity and subharmonic extensions of functions. Sbornik. Mathematics, Tome 208 (2017) no. 8, pp. 1225-1245. http://geodesic.mathdoc.fr/item/SM_2017_208_8_a6/

[1] M. Brelot, Éléments de la théorie classique du potentiel, 2nd ed., Centre de Documetation Universitaire, Paris, 1961, 191 pp. | MR | MR | Zbl | Zbl

[2] I. I. Privalov, “K opredeleniyu subgarmonicheskoi funktsii”, Izv. AN SSSR. Ser. matem., 5:4-5 (1941), 281–284 | MR | Zbl

[3] I. I. Privalov, “Nekotorye prilozheniya obobschennogo operatora Laplasa”, Matem. sb., 11(53):3 (1942), 149–154 | MR

[4] E. P. Dolzhenko, “The work of D. E. Men'shov in the theory of analytic functions and the present state of the theory of monogeneity”, Russian Math. Surveys, 47:5 (1992), 71–102 | DOI | MR | Zbl

[5] E. V. Glivenko, “O mere tipa Khausdorfa”, Matem. sb., 39(81):4 (1956), 423–432 | MR | Zbl

[6] W. K. Hayman, P. B. Kennedy, Subharmonic functions, v. I, London Math. Soc. Monogr., 9, Academic Press, London–New York, 1976, xvii+284 pp. | MR | MR | Zbl | Zbl

[7] L. Carleson, “Removable singularities for continuous harmonic functions in $\mathbb{R}^m$”, Math. Scand., 12 (1963), 15–18 | DOI | MR | Zbl

[8] L. Carleson, Selected problems on exceptional sets, Van Nostrand Math. Studies, 13, D. Van Nostrand Co., Inc., Princeton, N.J.–Toronto, Ont.–London, 1967, v+151 pp. | MR | MR | Zbl | Zbl

[9] E. P. Dolzhenko, “O predstavlenii nepreryvnykh garmonicheskikh funktsii v vide potentsialov”, Izv. AN SSSR. Ser. matem., 28:5 (1964), 1113–1130 | MR | Zbl

[10] J. Mateu, J. Orobitg, “Lipschitz approximation by harmonic functions and some applications to spectral synthesis”, Indiana Univ. Math. J., 39:3 (1990), 703–736 | DOI | MR | Zbl

[11] D. Ullrich, “Removable sets for harmonic functions”, Michigan Math. J., 38:3 (1991), 467–473 | DOI | MR | Zbl

[12] V. L. Shapiro, “Subharmonic functions and Hausdorff measure”, J. Differential Equations, 27:1 (1978), 28–45 | DOI | MR | Zbl

[13] A. S. Sadullaev, Zh. R. Yarmetov, “Removable singularities of plurisubharmonic functions of class $\operatorname{Lip}_\alpha$”, Sb. Math., 186:1 (1995), 133–150 | DOI | MR | Zbl

[14] R. Kaufman, Jang-Mei Wu, “Removable singularities for analytic or subharmonic functions”, Ark. Mat., 18:1 (1980), 107–116 | DOI | MR | Zbl

[15] E. P. Dolzhenko, “Ob osobykh tochkakh nepreryvnykh garmonicheskikh funktsii”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1251–1270 | MR | Zbl

[16] P. M. Tamrazov, “The final critetion for sets to be removable under subharmonic extension of functions”, Interational congress of mathematicians. Abstracts of short communications (Zürich), 1994, 112

[17] P. M. Tamrazov, “Garmonicheskie prostranstva i subgarmonicheskie prodolzheniya funktsii”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz, Tezisy dokladov mezhdunarodnoi konferentsii, posvyaschennoi 90-letiyu akademika S. M. Nikolskogo, M., 1995, 265–267

[18] P. M. Tamrazov, Konturno-telesnye zadachi dlya golomorfnykh funktsii i otobrazhenii, Preprint 83.65, In-t matem. AN USSR, Kiev, 1983, 50 pp. | MR

[19] P. M. Tamrazov, “Quasisubharmonic functions and cancellation of singularities”, Ukrainian Math. J., 38:5 (1986), 537–541 | DOI | MR | Zbl

[20] W. Sierpiński, “Sur une probléme concentrant les ensembles mesurable superficiellement”, Fund. Math., 1 (1920), 112–115 | Zbl

[21] V. I. Bogachev, Osnovy teorii mery, v. 1, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2003, 544 pp.

[22] J. M. Marstrand, “Some fundamental geometrical properties of plane sets of fractional dimensions”, Proc. London Math. Soc. (3), 4 (1954), 257–302 | DOI | MR | Zbl

[23] P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Stud. Adv. Math., 44, Cambrige Univ. Press, Cambrige, 1995, xii+343 pp. | DOI | MR | Zbl

[24] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983, ix+391 pp. | DOI | MR | MR | Zbl | Zbl

[25] I. I. Privalov, Subgarmonicheskie funktsii, ONTI NKTP SSSR, M.–L., 1937, 200 pp.

[26] I. P. Natanson, Theory of functions of a real variable, v. 1, 2, Frederick Ungar Publishing Co., New York, 1955, 1961, 277 pp., 265 pp. | MR | MR | MR | Zbl

[27] A. V. Pokrovskii, “Ob ustranimosti mnozhestv urovnya dlya subgarmonicheskikh funktsii”, Prikladnaya matematika i matematicheskaya fizika, 1:1 (2015), 17–26

[28] J. Král, “Some extension results concerning harmonic functions”, J. London Math. Soc. (2), 28:1 (1983), 62–70 | DOI | MR | Zbl