The Cauchy problem for a first-order quasilinear equation in the class of Besicovitch almost periodic functions
Sbornik. Mathematics, Tome 208 (2017) no. 8, pp. 1207-1224 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence and uniqueness of a generalized entropy solution in the class of Besicovitch almost periodic functions is proved for the Cauchy problem for a multidimensional inhomogeneous quasilinear equation of the first order. Bibliography: 12 titles.
Keywords: first order quasilinear equation, generalized entropy solution, Besicovitch almost periodic function, spectrum.
@article{SM_2017_208_8_a5,
     author = {E. Yu. Panov},
     title = {The {Cauchy} problem for a~first-order quasilinear equation in the class of {Besicovitch} almost periodic functions},
     journal = {Sbornik. Mathematics},
     pages = {1207--1224},
     year = {2017},
     volume = {208},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_8_a5/}
}
TY  - JOUR
AU  - E. Yu. Panov
TI  - The Cauchy problem for a first-order quasilinear equation in the class of Besicovitch almost periodic functions
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1207
EP  - 1224
VL  - 208
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_8_a5/
LA  - en
ID  - SM_2017_208_8_a5
ER  - 
%0 Journal Article
%A E. Yu. Panov
%T The Cauchy problem for a first-order quasilinear equation in the class of Besicovitch almost periodic functions
%J Sbornik. Mathematics
%D 2017
%P 1207-1224
%V 208
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2017_208_8_a5/
%G en
%F SM_2017_208_8_a5
E. Yu. Panov. The Cauchy problem for a first-order quasilinear equation in the class of Besicovitch almost periodic functions. Sbornik. Mathematics, Tome 208 (2017) no. 8, pp. 1207-1224. http://geodesic.mathdoc.fr/item/SM_2017_208_8_a5/

[1] S. N. Kružkov, “First order quasilinear equations in several independent variables”, Math. USSR-Sb., 10:2 (1970), 217–243 | DOI | MR | Zbl

[2] E. Yu. Panov, “On generalized entropy solutions of the Cauchy problem for a first-order quasilinear equation in the class of locally summable functions”, Izv. Math., 66:6 (2002), 1171–1218 | DOI | DOI | MR | Zbl

[3] Ph. Bénilan, S. Kružkov, “Conservation laws with continuous flux functions”, NoDEA Nonlinear Differential Equations Appl., 3:4 (1996), 395–419 | DOI | MR | Zbl

[4] S. N. Kruzhkov, E. Yu. Panov, “Conservative quasilinear first-order laws with an infinite domain of dependence on the initial data”, Soviet Math. Dokl., 42:2 (1991), 316–321 | MR | Zbl

[5] S. N. Kruzhkov, E. Yu. Panov, “Osgood's type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order”, Ann. Univ. Ferrara Sez. VII (N.S.), 40 (1994), 31–54 | MR | Zbl

[6] A. S. Besicovitch, Almost periodic functions, Cambridge Univ. Press, Cambridge, 1932, xiii+180 pp. | MR | Zbl

[7] B. M. Levitan, Pochti periodicheskie funktsii, Gostekhizdat, M., 1953, 396 pp. | MR | Zbl

[8] B. M. Levitan, V. V. Zhikov, Almost periodic functions and differential equations, Cambridge Univ. Press, Cambridge–New York, 1982, xi+211 pp. | MR | MR | Zbl | Zbl

[9] E. Yu. Panov, “On the Cauchy problem for scalar conservation laws in the class of Besicovitch almost periodic functions: global well-posedness and decay property”, J. Hyperbolic Differ. Equ., 13:3 (2016), 633–659 | DOI | MR | Zbl

[10] E. Yu. Panov, “Existence of strong traces for generalized solutions of multidimensional scalar conservation laws”, J. Hyperbolic Differ. Equ., 2:4 (2005), 885–908 | DOI | MR | Zbl

[11] S. Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965, xvii+508 pp. | MR | Zbl | Zbl

[12] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl