@article{SM_2017_208_8_a5,
author = {E. Yu. Panov},
title = {The {Cauchy} problem for a~first-order quasilinear equation in the class of {Besicovitch} almost periodic functions},
journal = {Sbornik. Mathematics},
pages = {1207--1224},
year = {2017},
volume = {208},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_8_a5/}
}
TY - JOUR AU - E. Yu. Panov TI - The Cauchy problem for a first-order quasilinear equation in the class of Besicovitch almost periodic functions JO - Sbornik. Mathematics PY - 2017 SP - 1207 EP - 1224 VL - 208 IS - 8 UR - http://geodesic.mathdoc.fr/item/SM_2017_208_8_a5/ LA - en ID - SM_2017_208_8_a5 ER -
E. Yu. Panov. The Cauchy problem for a first-order quasilinear equation in the class of Besicovitch almost periodic functions. Sbornik. Mathematics, Tome 208 (2017) no. 8, pp. 1207-1224. http://geodesic.mathdoc.fr/item/SM_2017_208_8_a5/
[1] S. N. Kružkov, “First order quasilinear equations in several independent variables”, Math. USSR-Sb., 10:2 (1970), 217–243 | DOI | MR | Zbl
[2] E. Yu. Panov, “On generalized entropy solutions of the Cauchy problem for a first-order quasilinear equation in the class of locally summable functions”, Izv. Math., 66:6 (2002), 1171–1218 | DOI | DOI | MR | Zbl
[3] Ph. Bénilan, S. Kružkov, “Conservation laws with continuous flux functions”, NoDEA Nonlinear Differential Equations Appl., 3:4 (1996), 395–419 | DOI | MR | Zbl
[4] S. N. Kruzhkov, E. Yu. Panov, “Conservative quasilinear first-order laws with an infinite domain of dependence on the initial data”, Soviet Math. Dokl., 42:2 (1991), 316–321 | MR | Zbl
[5] S. N. Kruzhkov, E. Yu. Panov, “Osgood's type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order”, Ann. Univ. Ferrara Sez. VII (N.S.), 40 (1994), 31–54 | MR | Zbl
[6] A. S. Besicovitch, Almost periodic functions, Cambridge Univ. Press, Cambridge, 1932, xiii+180 pp. | MR | Zbl
[7] B. M. Levitan, Pochti periodicheskie funktsii, Gostekhizdat, M., 1953, 396 pp. | MR | Zbl
[8] B. M. Levitan, V. V. Zhikov, Almost periodic functions and differential equations, Cambridge Univ. Press, Cambridge–New York, 1982, xi+211 pp. | MR | MR | Zbl | Zbl
[9] E. Yu. Panov, “On the Cauchy problem for scalar conservation laws in the class of Besicovitch almost periodic functions: global well-posedness and decay property”, J. Hyperbolic Differ. Equ., 13:3 (2016), 633–659 | DOI | MR | Zbl
[10] E. Yu. Panov, “Existence of strong traces for generalized solutions of multidimensional scalar conservation laws”, J. Hyperbolic Differ. Equ., 2:4 (2005), 885–908 | DOI | MR | Zbl
[11] S. Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965, xvii+508 pp. | MR | Zbl | Zbl
[12] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl