The Cauchy problem for a~first-order quasilinear equation in the class of Besicovitch almost periodic functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 208 (2017) no. 8, pp. 1207-1224
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The existence and uniqueness of a generalized entropy solution in the class of Besicovitch almost periodic functions is proved for the Cauchy problem for a multidimensional inhomogeneous quasilinear equation of the first order.
Bibliography: 12 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
first order quasilinear equation, generalized entropy solution, Besicovitch almost periodic function, spectrum.
                    
                    
                    
                  
                
                
                @article{SM_2017_208_8_a5,
     author = {E. Yu. Panov},
     title = {The {Cauchy} problem for a~first-order quasilinear equation in the class of {Besicovitch} almost periodic functions},
     journal = {Sbornik. Mathematics},
     pages = {1207--1224},
     publisher = {mathdoc},
     volume = {208},
     number = {8},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_8_a5/}
}
                      
                      
                    TY - JOUR AU - E. Yu. Panov TI - The Cauchy problem for a~first-order quasilinear equation in the class of Besicovitch almost periodic functions JO - Sbornik. Mathematics PY - 2017 SP - 1207 EP - 1224 VL - 208 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2017_208_8_a5/ LA - en ID - SM_2017_208_8_a5 ER -
E. Yu. Panov. The Cauchy problem for a~first-order quasilinear equation in the class of Besicovitch almost periodic functions. Sbornik. Mathematics, Tome 208 (2017) no. 8, pp. 1207-1224. http://geodesic.mathdoc.fr/item/SM_2017_208_8_a5/
