Uniqueness of the renormalized solution of an elliptic-parabolic problem in~anisotropic Sobolev-Orlicz spaces
Sbornik. Mathematics, Tome 208 (2017) no. 8, pp. 1187-1206

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the first mixed problem for a class of anisotropic elliptic-parabolic equations with double variable nonlinearities in a cylindrical domain $(0,T)\times\Omega$. The domain $\Omega\subset\mathbb{R}^n$ can be unbounded. The uniqueness of the renormalized solution is proved using Kruzhkov's method of doubling the variable $t$. The same result is established for an equation with non-power law nonlinearities. Bibliography: 24 titles.
Keywords: renormalized solution, variable nonlinearity, uniqueness of solution, $N$-function.
Mots-clés : anisotropic parabolic equation
@article{SM_2017_208_8_a4,
     author = {F. Kh. Mukminov},
     title = {Uniqueness of the renormalized solution of an elliptic-parabolic problem in~anisotropic {Sobolev-Orlicz} spaces},
     journal = {Sbornik. Mathematics},
     pages = {1187--1206},
     publisher = {mathdoc},
     volume = {208},
     number = {8},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_8_a4/}
}
TY  - JOUR
AU  - F. Kh. Mukminov
TI  - Uniqueness of the renormalized solution of an elliptic-parabolic problem in~anisotropic Sobolev-Orlicz spaces
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1187
EP  - 1206
VL  - 208
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_8_a4/
LA  - en
ID  - SM_2017_208_8_a4
ER  - 
%0 Journal Article
%A F. Kh. Mukminov
%T Uniqueness of the renormalized solution of an elliptic-parabolic problem in~anisotropic Sobolev-Orlicz spaces
%J Sbornik. Mathematics
%D 2017
%P 1187-1206
%V 208
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_8_a4/
%G en
%F SM_2017_208_8_a4
F. Kh. Mukminov. Uniqueness of the renormalized solution of an elliptic-parabolic problem in~anisotropic Sobolev-Orlicz spaces. Sbornik. Mathematics, Tome 208 (2017) no. 8, pp. 1187-1206. http://geodesic.mathdoc.fr/item/SM_2017_208_8_a4/