Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev-Orlicz spaces
Sbornik. Mathematics, Tome 208 (2017) no. 8, pp. 1187-1206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the first mixed problem for a class of anisotropic elliptic-parabolic equations with double variable nonlinearities in a cylindrical domain $(0,T)\times\Omega$. The domain $\Omega\subset\mathbb{R}^n$ can be unbounded. The uniqueness of the renormalized solution is proved using Kruzhkov's method of doubling the variable $t$. The same result is established for an equation with non-power law nonlinearities. Bibliography: 24 titles.
Keywords: renormalized solution, variable nonlinearity, uniqueness of solution, $N$-function.
Mots-clés : anisotropic parabolic equation
@article{SM_2017_208_8_a4,
     author = {F. Kh. Mukminov},
     title = {Uniqueness of the renormalized solution of an elliptic-parabolic problem in~anisotropic {Sobolev-Orlicz} spaces},
     journal = {Sbornik. Mathematics},
     pages = {1187--1206},
     year = {2017},
     volume = {208},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_8_a4/}
}
TY  - JOUR
AU  - F. Kh. Mukminov
TI  - Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev-Orlicz spaces
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1187
EP  - 1206
VL  - 208
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_8_a4/
LA  - en
ID  - SM_2017_208_8_a4
ER  - 
%0 Journal Article
%A F. Kh. Mukminov
%T Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev-Orlicz spaces
%J Sbornik. Mathematics
%D 2017
%P 1187-1206
%V 208
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2017_208_8_a4/
%G en
%F SM_2017_208_8_a4
F. Kh. Mukminov. Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev-Orlicz spaces. Sbornik. Mathematics, Tome 208 (2017) no. 8, pp. 1187-1206. http://geodesic.mathdoc.fr/item/SM_2017_208_8_a4/

[1] M. A. Krasnosel'skii, Ya. B. Rutitskii, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961, xi+249 pp. | MR | MR | Zbl | Zbl

[2] P. A. Raviart, “Sur la résolution de certaines equations paraboliques non linéaires”, J. Functional Analysis, 5:2 (1970), 299–328 | DOI | MR | Zbl

[3] A. Bamberger, “Étude d'une équation doublement non linéaire”, J. Functional Analysis, 24:2 (1977), 148–155 | DOI | MR | Zbl

[4] H. W. Alt, S. Luckhaus, “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183:3 (1983), 311–341 | DOI | MR | Zbl

[5] A. V. Ivanov, P. Z. Mkrtychyan, W. Jäger, “Existence and uniqueness of a regular solution of the Cauchy–Dirichlet problem for a class of doubly nonlinear parabolic equations”, J. Math. Sci. (N. Y.), 84:1 (1997), 845–855 | DOI | MR | Zbl

[6] P. Z. Mkrtychyian, “On the uniqueness of a solution of the second initial boundary-value problem for the equation of non-Newtonian polytropic filtration”, J. Math. Sci. (N. Y.), 77:3 (1995), 3207–3211 | DOI | MR | Zbl

[7] F. Otto, “$L^1$-contraction and uniqueness for quasilinear elliptic-parabolic equations”, J. Differential Equations, 131:1 (1996), 20–38 | DOI | MR | Zbl

[8] S. N. Kružkov, “First order quasilinear equations in several independent variables”, Math. USSR-Sb., 10:2 (1970), 217–243 | DOI | MR | Zbl

[9] Ph. Bénilan, L. Boccardo, Th. Galluet, M. Pierre, J. L. Vazquëz, “An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22:2 (1995), 241–273 | MR | Zbl

[10] R. J. DiPerna, P. L. Lions, “On the Cauchy problem for Boltzmann equations: global existence and weak stability”, Ann. of Math. (2), 130:2 (1989), 321–366 | DOI | MR | Zbl

[11] D. Blanchard, F. Murat, “Renormalised solutions of nonlinear parabolic problems with $L^1$ data: existence and uniqueness”, Proc. Roy. Soc. Edinburgh Sect. A, 127:6 (1997), 1137–1152 | DOI | MR | Zbl

[12] A. Prignet, “Existence and uniqueness of “entropy” solutions of parabolic problems with $L^1$ data”, Nonlinear Anal., 28:12 (1997), 1943–1954 | DOI | MR | Zbl

[13] J. Carrillo, P. Wittbold, “Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems”, J. Differential Equations, 156:1 (1999), 93–121 | DOI | MR | Zbl

[14] S. N. Antontsev, S. I. Shmarev, “Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity”, J. Math. Sci. (N. Y.), 150:5 (2008), 2289–2301 | DOI | MR | Zbl

[15] H. Redwane, “Uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities”, Rend. Mat. Appl. (7), 28:2 (2008), 189–200 | MR | Zbl

[16] H. Redwane, “Existence results for a class of nonlinear parabolic equations in Orlicz spaces”, Electron. J. Qual. Theory Differ. Equ., 2010, 2, 19 pp. | MR | Zbl

[17] Chao Zhang, Shulin Zhou, “Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and $L^1$ data”, J. Differential Equations, 248:6 (2010), 1376–1400 | DOI | MR | Zbl

[18] M. Bendahmane, P. Wittbold, A. Zimmermann, “Renormalized solutions for a nonlinear parabolic equation with variable exponents and $L^1$ data”, J. Differential Equations, 249:6 (2010), 1483–1515 | DOI | MR | Zbl

[19] E. Panov, “On weak completeness of the set of entropy solutions to a degenerate nonlinear parabolic equation”, SIAM J. Math. Anal., 44:1 (2012), 513–535 | DOI | MR | Zbl

[20] E. R. Andriyanova, “Estimates of decay rate for solution to parabolic equation with non-power nonlinearities”, Ufa Math. J., 6:2 (2014), 3–24 | DOI | MR | Zbl

[21] È. R. Andriyanova, F. Kh. Mukminov, “Existence and qualitative properties of a solution of the first mixed problem for a parabolic equation with non-power-law double nonlinearity”, Sb. Math., 207:1 (2016), 1–40 | DOI | DOI | MR | Zbl

[22] L. M. Kozhevnikova, A. A. Leontiev, “Decay of solution of anisotropic doubly nonlinear parabolic equation in unbounded domains”, Ufa Math. J., 5:1 (2013), 63–82 | DOI | MR

[23] Yu. A. Alkhutov, V. V. Zhikov, “Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent”, Sb. Math., 205:3 (2014), 307–318 | DOI | DOI | MR | Zbl

[24] J.-P. Gossez, “Some approximation properties in Orlicz–Sobolev spaces”, Studia Math., 74:1 (1982), 17–24 | MR | Zbl