Uniqueness of the renormalized solution of an elliptic-parabolic problem in~anisotropic Sobolev-Orlicz spaces
Sbornik. Mathematics, Tome 208 (2017) no. 8, pp. 1187-1206
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the first mixed problem for a class of anisotropic elliptic-parabolic equations with double variable nonlinearities in a cylindrical domain $(0,T)\times\Omega$. The domain $\Omega\subset\mathbb{R}^n$ can be unbounded. The uniqueness of the renormalized solution is proved using Kruzhkov's method of doubling the variable $t$. The same result is established for an equation with non-power law nonlinearities.
Bibliography: 24 titles.
Keywords:
renormalized solution, variable nonlinearity, uniqueness of solution, $N$-function.
Mots-clés : anisotropic parabolic equation
Mots-clés : anisotropic parabolic equation
@article{SM_2017_208_8_a4,
author = {F. Kh. Mukminov},
title = {Uniqueness of the renormalized solution of an elliptic-parabolic problem in~anisotropic {Sobolev-Orlicz} spaces},
journal = {Sbornik. Mathematics},
pages = {1187--1206},
publisher = {mathdoc},
volume = {208},
number = {8},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_8_a4/}
}
TY - JOUR AU - F. Kh. Mukminov TI - Uniqueness of the renormalized solution of an elliptic-parabolic problem in~anisotropic Sobolev-Orlicz spaces JO - Sbornik. Mathematics PY - 2017 SP - 1187 EP - 1206 VL - 208 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2017_208_8_a4/ LA - en ID - SM_2017_208_8_a4 ER -
F. Kh. Mukminov. Uniqueness of the renormalized solution of an elliptic-parabolic problem in~anisotropic Sobolev-Orlicz spaces. Sbornik. Mathematics, Tome 208 (2017) no. 8, pp. 1187-1206. http://geodesic.mathdoc.fr/item/SM_2017_208_8_a4/