Mots-clés : viscous gas
@article{SM_2017_208_8_a2,
author = {W. Weigant and P. I. Plotnikov},
title = {Bounds for solutions of isothermal equations of viscous gas dynamics},
journal = {Sbornik. Mathematics},
pages = {1113--1137},
year = {2017},
volume = {208},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_8_a2/}
}
W. Weigant; P. I. Plotnikov. Bounds for solutions of isothermal equations of viscous gas dynamics. Sbornik. Mathematics, Tome 208 (2017) no. 8, pp. 1113-1137. http://geodesic.mathdoc.fr/item/SM_2017_208_8_a2/
[1] R. A. Adams, Sobolev spaces, Pure Appl. Math., 65, Academic Press, New York–London, 1975, xviii+268 pp. | MR | Zbl
[2] E. Feireisl, A. Novotný, H. Petzeltová, “On the existence of globally defined weak solutions to the Navier–Stokes equations”, J. Math. Fluid Mech., 3:4 (2001), 358–392 | DOI | MR | Zbl
[3] E. Feireisl, Dynamics of viscous compressible fluids, Oxford Lecture Ser. Math. Appl., 26, Oxford Univ. Press, Oxford, 2004, xii+212 pp. | MR | Zbl
[4] P. L. Lions, Mathematical topics in fluid dynamics, v. 2, Oxford Lecture Ser. Math. Appl., 10, Compressible models, The Clarendon Press, Oxford Univ. Press, New York, 1998, xiv+348 pp. | MR | Zbl
[5] A. Novotný, I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Ser. Math. Appl., 27, Oxford Univ. Press, Oxford, 2004, xx+506 pp. | MR | Zbl
[6] M. Padula, “Existence of global solutions for 2-dimensional viscous compressible flows”, J. Funct. Anal., 69:1 (1986), 1–20 | DOI | MR | Zbl
[7] P. Plotnikov, J. Sokolowski, Compressible Navier–Stokes equations. Theory and shape optimization, IMPAN Monogr. Mat. (N. S.), 73, Birkhäuser/Springer Basel AG, Basel, 2012, xvi+457 pp. | DOI | MR | Zbl
[8] P. I. Plotnikov, W. Weigant, “Isothermal Navier–Stokes equations and Radon transform”, SIAM J. Math. Anal., 47:1 (2015), 626–653 | DOI | MR | Zbl