Bounds for solutions of isothermal equations of viscous gas dynamics
Sbornik. Mathematics, Tome 208 (2017) no. 8, pp. 1113-1137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the first boundary-value problem for the Navier-Stokes equations of isothermal viscous gas flows. We establish bounds for the flow density in negative Sobolev spaces and Lebesgue spaces. Bibliography: 8 titles.
Keywords: Navier-Stokes equations, potentials.
Mots-clés : viscous gas
@article{SM_2017_208_8_a2,
     author = {W. Weigant and P. I. Plotnikov},
     title = {Bounds for solutions of isothermal equations of viscous gas dynamics},
     journal = {Sbornik. Mathematics},
     pages = {1113--1137},
     year = {2017},
     volume = {208},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_8_a2/}
}
TY  - JOUR
AU  - W. Weigant
AU  - P. I. Plotnikov
TI  - Bounds for solutions of isothermal equations of viscous gas dynamics
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1113
EP  - 1137
VL  - 208
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_8_a2/
LA  - en
ID  - SM_2017_208_8_a2
ER  - 
%0 Journal Article
%A W. Weigant
%A P. I. Plotnikov
%T Bounds for solutions of isothermal equations of viscous gas dynamics
%J Sbornik. Mathematics
%D 2017
%P 1113-1137
%V 208
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2017_208_8_a2/
%G en
%F SM_2017_208_8_a2
W. Weigant; P. I. Plotnikov. Bounds for solutions of isothermal equations of viscous gas dynamics. Sbornik. Mathematics, Tome 208 (2017) no. 8, pp. 1113-1137. http://geodesic.mathdoc.fr/item/SM_2017_208_8_a2/

[1] R. A. Adams, Sobolev spaces, Pure Appl. Math., 65, Academic Press, New York–London, 1975, xviii+268 pp. | MR | Zbl

[2] E. Feireisl, A. Novotný, H. Petzeltová, “On the existence of globally defined weak solutions to the Navier–Stokes equations”, J. Math. Fluid Mech., 3:4 (2001), 358–392 | DOI | MR | Zbl

[3] E. Feireisl, Dynamics of viscous compressible fluids, Oxford Lecture Ser. Math. Appl., 26, Oxford Univ. Press, Oxford, 2004, xii+212 pp. | MR | Zbl

[4] P. L. Lions, Mathematical topics in fluid dynamics, v. 2, Oxford Lecture Ser. Math. Appl., 10, Compressible models, The Clarendon Press, Oxford Univ. Press, New York, 1998, xiv+348 pp. | MR | Zbl

[5] A. Novotný, I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Ser. Math. Appl., 27, Oxford Univ. Press, Oxford, 2004, xx+506 pp. | MR | Zbl

[6] M. Padula, “Existence of global solutions for 2-dimensional viscous compressible flows”, J. Funct. Anal., 69:1 (1986), 1–20 | DOI | MR | Zbl

[7] P. Plotnikov, J. Sokolowski, Compressible Navier–Stokes equations. Theory and shape optimization, IMPAN Monogr. Mat. (N. S.), 73, Birkhäuser/Springer Basel AG, Basel, 2012, xvi+457 pp. | DOI | MR | Zbl

[8] P. I. Plotnikov, W. Weigant, “Isothermal Navier–Stokes equations and Radon transform”, SIAM J. Math. Anal., 47:1 (2015), 626–653 | DOI | MR | Zbl