Asymptotic analysis of the parametric instability of nonlinear hyperbolic equations
Sbornik. Mathematics, Tome 208 (2017) no. 8, pp. 1088-1112

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with parametric resonance under nonlinear periodic perturbations of differential equations which are abstract analogues of hyperbolic systems. A modification of the Krylov-Bogolyubov averaging method capable of circumventing the well-known small divisor problem is applied to reduce the description of solutions of perturbed equations at resonance to the study of autonomous dynamical systems in finite-dimensional spaces. Bibliography: 28 titles.
Keywords: hyperbolic equations, parametric resonance, averaging method.
@article{SM_2017_208_8_a1,
     author = {V. S. Belonosov},
     title = {Asymptotic analysis of the parametric instability of nonlinear hyperbolic equations},
     journal = {Sbornik. Mathematics},
     pages = {1088--1112},
     publisher = {mathdoc},
     volume = {208},
     number = {8},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_8_a1/}
}
TY  - JOUR
AU  - V. S. Belonosov
TI  - Asymptotic analysis of the parametric instability of nonlinear hyperbolic equations
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1088
EP  - 1112
VL  - 208
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_8_a1/
LA  - en
ID  - SM_2017_208_8_a1
ER  - 
%0 Journal Article
%A V. S. Belonosov
%T Asymptotic analysis of the parametric instability of nonlinear hyperbolic equations
%J Sbornik. Mathematics
%D 2017
%P 1088-1112
%V 208
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_8_a1/
%G en
%F SM_2017_208_8_a1
V. S. Belonosov. Asymptotic analysis of the parametric instability of nonlinear hyperbolic equations. Sbornik. Mathematics, Tome 208 (2017) no. 8, pp. 1088-1112. http://geodesic.mathdoc.fr/item/SM_2017_208_8_a1/