Asymptotic analysis of the parametric instability of nonlinear hyperbolic equations
Sbornik. Mathematics, Tome 208 (2017) no. 8, pp. 1088-1112
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is concerned with parametric resonance under nonlinear periodic perturbations of differential equations which are abstract analogues of hyperbolic systems. A modification of the Krylov-Bogolyubov averaging method capable of circumventing the well-known small divisor problem is applied to reduce the description of solutions of perturbed equations at resonance to the study of autonomous dynamical systems in finite-dimensional spaces.
Bibliography: 28 titles.
Keywords:
hyperbolic equations, parametric resonance, averaging method.
@article{SM_2017_208_8_a1,
author = {V. S. Belonosov},
title = {Asymptotic analysis of the parametric instability of nonlinear hyperbolic equations},
journal = {Sbornik. Mathematics},
pages = {1088--1112},
publisher = {mathdoc},
volume = {208},
number = {8},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_8_a1/}
}
V. S. Belonosov. Asymptotic analysis of the parametric instability of nonlinear hyperbolic equations. Sbornik. Mathematics, Tome 208 (2017) no. 8, pp. 1088-1112. http://geodesic.mathdoc.fr/item/SM_2017_208_8_a1/