@article{SM_2017_208_7_a6,
author = {E. M. Chirka},
title = {On removable singularities of complex analytic sets},
journal = {Sbornik. Mathematics},
pages = {1073--1086},
year = {2017},
volume = {208},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_7_a6/}
}
E. M. Chirka. On removable singularities of complex analytic sets. Sbornik. Mathematics, Tome 208 (2017) no. 7, pp. 1073-1086. http://geodesic.mathdoc.fr/item/SM_2017_208_7_a6/
[1] J. Garnett, Analytic capacity and measure, Lecture Notes in Math., 297, Springer-Verlag, Berlin–New York, 1972, iv+138 pp. | DOI | MR | Zbl
[2] B. Shiffman, “On the removal of singularities of analytic sets”, Michigan Math. J., 15 (1968), 111–120 | DOI | MR | Zbl
[3] E. M. Chirka, Complex analytic sets, Math. Appl. (Soviet Ser.), 46, Kluwer Acad. Publ., Dordrecht, 1989, xx+372 pp. | DOI | MR | MR | Zbl | Zbl
[4] E. L. Stout, Polynomial convexity, Progr. Math., 261, Birhäuser Boston, Inc., Boston, MA, 2007, xii+439 pp. | MR | Zbl
[5] N. Bruschlinsky, “Stetige Abbildungen und Bettische Gruppen der Dimensionszahlen 1 und 3”, Math. Ann., 109:1 (1934), 525–537 | DOI | MR | Zbl
[6] W. Hurewicz, H. Wallman, Dimension theory, Princeton Mathematical Series, 4, Princeton Univ. Press, Princeton, NJ, 1941, vii+165 pp. | MR | Zbl
[7] G. Stolzenberg, “Uniform approximation on smooth curves”, Acta Math., 115 (1966), 185–198 | DOI | MR | Zbl
[8] B. V. Shabat, Introduction to complex analysis, v. 2, Transl. Math. Monogr., 110, Amer. Math. Soc., Providence, RI, 1992, x+371 pp. | MR | MR | Zbl | Zbl
[9] E. M. Chirka, “Removable singularities of holomorphic functions”, Sb. Math., 207:9 (2016), 1335–1343 | DOI | DOI | MR | Zbl
[10] E. M. Chirka, “On the $\bar\partial$-problem with $L^2$-estimates on a Riemann surface”, Proc. Steklov Inst. Math., 290:1 (2015), 264–276 | DOI | DOI | MR | Zbl