Steiner minimal trees in small neighbourhoods of points in Riemannian manifolds
Sbornik. Mathematics, Tome 208 (2017) no. 7, pp. 1049-1072

Voir la notice de l'article provenant de la source Math-Net.Ru

In contrast to the Euclidean case, almost no Steiner minimal trees with concrete boundaries on Riemannian manifolds are known. A result describing the types of Steiner minimal trees on a Riemannian manifold for arbitrary small boundaries is obtained. As a consequence, it is shown that for sufficiently small regular $n$-gons with $n\geqslant 7$ their boundaries without a longest side are Steiner minimal trees. Bibliography: 22 titles.
Keywords: minimal networks.
@article{SM_2017_208_7_a5,
     author = {V. M. Chikin},
     title = {Steiner minimal trees in small neighbourhoods of points in {Riemannian} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {1049--1072},
     publisher = {mathdoc},
     volume = {208},
     number = {7},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_7_a5/}
}
TY  - JOUR
AU  - V. M. Chikin
TI  - Steiner minimal trees in small neighbourhoods of points in Riemannian manifolds
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1049
EP  - 1072
VL  - 208
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_7_a5/
LA  - en
ID  - SM_2017_208_7_a5
ER  - 
%0 Journal Article
%A V. M. Chikin
%T Steiner minimal trees in small neighbourhoods of points in Riemannian manifolds
%J Sbornik. Mathematics
%D 2017
%P 1049-1072
%V 208
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_7_a5/
%G en
%F SM_2017_208_7_a5
V. M. Chikin. Steiner minimal trees in small neighbourhoods of points in Riemannian manifolds. Sbornik. Mathematics, Tome 208 (2017) no. 7, pp. 1049-1072. http://geodesic.mathdoc.fr/item/SM_2017_208_7_a5/