Steiner minimal trees in small neighbourhoods of points in Riemannian manifolds
Sbornik. Mathematics, Tome 208 (2017) no. 7, pp. 1049-1072 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In contrast to the Euclidean case, almost no Steiner minimal trees with concrete boundaries on Riemannian manifolds are known. A result describing the types of Steiner minimal trees on a Riemannian manifold for arbitrary small boundaries is obtained. As a consequence, it is shown that for sufficiently small regular $n$-gons with $n\geqslant 7$ their boundaries without a longest side are Steiner minimal trees. Bibliography: 22 titles.
Keywords: minimal networks.
@article{SM_2017_208_7_a5,
     author = {V. M. Chikin},
     title = {Steiner minimal trees in small neighbourhoods of points in {Riemannian} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {1049--1072},
     year = {2017},
     volume = {208},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_7_a5/}
}
TY  - JOUR
AU  - V. M. Chikin
TI  - Steiner minimal trees in small neighbourhoods of points in Riemannian manifolds
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1049
EP  - 1072
VL  - 208
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_7_a5/
LA  - en
ID  - SM_2017_208_7_a5
ER  - 
%0 Journal Article
%A V. M. Chikin
%T Steiner minimal trees in small neighbourhoods of points in Riemannian manifolds
%J Sbornik. Mathematics
%D 2017
%P 1049-1072
%V 208
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2017_208_7_a5/
%G en
%F SM_2017_208_7_a5
V. M. Chikin. Steiner minimal trees in small neighbourhoods of points in Riemannian manifolds. Sbornik. Mathematics, Tome 208 (2017) no. 7, pp. 1049-1072. http://geodesic.mathdoc.fr/item/SM_2017_208_7_a5/

[1] V. Jarník, M. Kössler, “O minimálních grafech, obsahujících $n$ daných bodu”, Časopis Pěst. Mat. Fys., 63:8 (1934), 223–235 | Zbl

[2] D. Z. Du, F. K. Hwang, J. F. Weng, “Steiner minimal trees for regular polygons”, Discrete Comput. Geom., 2:1 (1987), 65–84 | DOI | MR | Zbl

[3] J. H. Rubinstein, D. A. Thomas, “Graham's problem on shortest networks for points on a circle”, Algorithmica, 7:2-3 (1992), 193–218 | DOI | MR | Zbl

[4] D. Z. Du, F. K. Hwang, J. F. Weng, “Steiner minimal trees on zig-zag lines”, Trans. Amer. Math. Soc., 278:1 (1983), 149–156 | DOI | MR | Zbl

[5] M. Brazil, J. H. Rubinstein, D. A. Thomas, J. F. Weng, N. C. Wormald, “Full minimal Steiner trees on lattice sets”, J. Combin. Theory Ser. A, 78:1 (1997), 51–91 | DOI | MR | Zbl

[6] M. Brazil, T. Cole, J. H. Rubinstein, D. A. Thomas, J. F. Weng, N. C. Wormald, “Minimal Steiner trees for $2^k \times 2^k$ square lattices”, J. Combin. Theory Ser. A, 73:1 (1996), 91–110 | DOI | MR | Zbl

[7] M. Brazil, J. H. Rubinstein, D. A. Thomas, J. F. Weng, N. C. Wormald, “Minimal Steiner trees for rectangular arrays of lattice points”, J. Combin. Theory Ser. A, 79:2 (1997), 181–208 ; Research report No 24, Dept. Math., Univ. Melbourne, 1995 | DOI | MR | Zbl

[8] F. R. K. Chung, R. L. Graham, “Steiner trees for ladders”, Ann. Discrete Math., 2 (1978), 173–200 | DOI | MR | Zbl

[9] F. Chung, M. Gardner, R. Graham, “Steiner trees on a checkerboard”, Math. Mag., 62:2 (1989), 83–96 | DOI | MR | Zbl

[10] A. O. Ivanov, A. A. Tuzhilin, “Geometry of minimal networks and the one-dimensional Plateau problem”, Russian Math. Surveys, 47:2 (1992), 59–131 | DOI | MR | Zbl

[11] A. O. Ivanov, A. A. Tuzhilin, Teoriya ekstremalnykh setei, M.–Izhevsk, Institut kompyuternykh issledovanii, 2003, 424 pp.

[12] A. Heppes, “Isogonale sphärische Netze”, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 7 (1964), 41–48 | MR | Zbl

[13] A. O. Ivanov, I. V. Ptitsyna, A. A. Tuzhilin, “Classification of closed minimal networks on flat two-dimensional tori”, Russian Acad. Sci. Sb. Math., 77:2 (1994), 391–425 | DOI | MR | Zbl

[14] I. V. Ptitsyna, “Classification of closed locally minimal networks on flat Klein bottles”, Moscow Univ. Math. Bull., 50:2 (1995), 13–19 | MR | Zbl

[15] I. V. Ptitsyna, “Classification of closed minimal networks on tetrahedra”, Russian Acad. Sci. Sb. Math., 82:1 (1995), 101–116 | DOI | MR | Zbl

[16] A. O. Ivanov, A. A. Tuzhilin, Minimal networks. Steiner problem and its generalizations, CRC Press, Boca Raton, FL, 1994, xviii+414 pp. | MR | Zbl

[17] A. A. Vdovina, E. N. Selivanova, “Locally minimal networks on surfaces of constant negative curvature”, Moscow Univ. Math. Bull., 52:6 (1997), 8–10 | MR | Zbl

[18] N. P. Strelkova, “Closed locally minimal nets on tetrahedra”, Sb. Math., 202:1 (2011), 135–153 | DOI | DOI | MR | Zbl

[19] N. P. Strelkova, “Zamknutye lokalno minimalnye seti na poverkhnostyakh vypuklykh mnogogrannikov”, Model. i analiz inform. sistem, 20:5 (2013), 117–147

[20] A. O. Ivanov, A. A. Tuzhilin, The Steiner problem and its generalizations, CRC Press, London–Tokyo, 1994 | MR

[21] Sh. Kobayashi, K. Nomizu, Foundations of differential geometry, v. I, Interscience Publishers [John Wiley Sons], New York–London, 1963, xi+329 pp. | MR | MR | Zbl | Zbl

[22] A. D. Alexandrow, “Über eine Verallgemeinerung der Riemannschen Geometrie”, Schr. Forschungsinst. Math., 1 (1957), 33–84 | MR | Zbl