@article{SM_2017_208_7_a4,
author = {V. R. Fatalov},
title = {Brownian motion on $[0,\infty)$ with linear drift, reflected at zero: exact asymptotics for ergodic means},
journal = {Sbornik. Mathematics},
pages = {1014--1048},
year = {2017},
volume = {208},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_7_a4/}
}
TY - JOUR AU - V. R. Fatalov TI - Brownian motion on $[0,\infty)$ with linear drift, reflected at zero: exact asymptotics for ergodic means JO - Sbornik. Mathematics PY - 2017 SP - 1014 EP - 1048 VL - 208 IS - 7 UR - http://geodesic.mathdoc.fr/item/SM_2017_208_7_a4/ LA - en ID - SM_2017_208_7_a4 ER -
V. R. Fatalov. Brownian motion on $[0,\infty)$ with linear drift, reflected at zero: exact asymptotics for ergodic means. Sbornik. Mathematics, Tome 208 (2017) no. 7, pp. 1014-1048. http://geodesic.mathdoc.fr/item/SM_2017_208_7_a4/
[1] M. A. Leontovich, Statisticheskaya fizika, GITTL, M., 1944, 259 pp.
[2] S. M. Rytov, Vvedenie v statisticheskuyu radiofiziku, v. 1, Sluchainye protsessy, Nauka, M., 1976, 496 pp.
[3] I. A. Kvasnikov, Termodinamika i statisticheskaya fizika, v. 3, Teoriya neravnovesnykh sistem, Izd. 2-e, pererab. i dop., Editorial URSS, M., 2003, 448 pp.
[4] A. N. Borodin, P. Salminen, Handbook of Brownian motion – facts and formulae, Probab. Appl., Birkhäuser Verlag, Basel, 1996, xiv+462 pp. | DOI | MR | Zbl
[5] S. Kusuoka, Y. Tamura, “Precise estimate for large deviation of Donsker–Varadhan type”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 38:3 (1991), 533–565 | MR | Zbl
[6] V. I. Piterbarg, V. R. Fatalov, “The Laplace method for probability measures in Banach spaces”, Russian Math. Surveys, 50:6 (1995), 1151–1239 | DOI | MR | Zbl
[7] V. R. Fatalov, “The Laplace method for small deviations of Gaussian processes of Wiener type”, Sb. Math., 196:4 (2005), 595–620 | DOI | DOI | MR | Zbl
[8] V. R. Fatalov, “Occupation time and exact asymptotics of distributions of $L^p$-functionals of the Ornstein–Uhlenbeck processes, $p>0$”, Theory Probab. Appl., 53:1 (2009), 13–36 | DOI | DOI | MR | Zbl
[9] V. R. Fatalov, “Exact asymptotics of Laplace-type Wiener integrals for $L^p$-functionals”, Izv. Math., 74:1 (2010), 189–216 | DOI | DOI | MR | Zbl
[10] V. R. Fatalov, “Ergodic means for large values of $T$ and exact asymptotics of small deviations for a multi-dimensional Wiener process”, Izv. Math., 77:6 (2013), 1224–1259 | DOI | DOI | MR | Zbl
[11] M. A. Naimark, Linear differential operators, v. I, II, Frederick Ungar Publishing Co., New York, 1967, 1968, xiii+144 pp., xv+352 pp. | MR | MR | MR | Zbl | Zbl
[12] Functional analysis, ed. S. G. Krejn, Wolters-Noordhoff Publishing, Groningen, 1972, xv+380 pp. | MR | MR | Zbl | Zbl
[13] B. M. Levitan, I. S. Sargsjan, Introduction to spectral theory: selfadjoint ordinary differential operators, Transl. Math. Monogr., 39, Amer. Math. Soc., Providence, RI, 1975, xi+525 pp. | MR | MR | Zbl | Zbl
[14] F. W. J. Olver, Computer Science and Applied Mathematics, Academic Press, New York–London, 1974, xvi+572 pp. | MR | MR | Zbl | Zbl
[15] V. S. Korolyuk, N. I. Portenko, A. V. Skorokhod, A. F. Turbin, Spravochnik po teorii veroyatnostei i matematicheskoi statistike, 2-e izd., Nauka, M., 1985, 640 pp. | MR | Zbl
[16] Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, eds. M. Abramowitz, I. A. Stegun, Superintendent of Documents, U.S. Government Printing Office, Washington, DC, 1964, xiv+1046 pp. | MR | MR | Zbl | Zbl
[17] M. Kac, “On the average of a certain Wiener functional and a related limit theorem in calculus of probability”, Trans. Amer. Math. Soc., 59:3 (1946), 401–414 | DOI | MR | Zbl
[18] M. Fukushima, Y. Ōshima, M. Takeda, Dirichlet forms and symmetric Markov processes, De Gruyter Stud. Math., 19, Walter de Gruyter Co., Berlin, 1994, x+392 pp. | DOI | MR | Zbl
[19] M. Fukushima, M. Takeda, “A transformation of a symmetric Markov process and the Donsker–Varadhan theory”, Osaka J. Math., 21:2 (1984), 311–326 | MR | Zbl
[20] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimal control, Contemp. Soviet Math., Consultants Bureau, New York, 1987, xiv+309 pp. | DOI | MR | MR | Zbl | Zbl
[21] M. D. Donsker, S. R. S. Varadhan, “Asymptotic evaluation of certain Markov process expectations for large time. III”, Comm. Pure Appl. Math., 29:4 (1976), 389–461 | DOI | MR | Zbl
[22] J. R. Baxter, N. C. Jain, S. R. S. Varadhan, “Some familiar examples for which the large deviation principle does not hold”, Comm. Pure Appl. Math., 44:8-9 (1991), 911–923 | DOI | MR | Zbl
[23] E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen, v. 1, Gewöhnliche Differentialgleichungen, Akademische Verlagsgesellschaft, Geest Portig K.-G., Leipzig, 1942, xxvi+642 pp. | MR | Zbl | Zbl
[24] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl
[25] M. Reed, B. Simon, Methods of modern mathematical physics, v. I, Academic Press, New York–London, 1972, xvii+325 pp. | MR | MR | Zbl
[26] M. M. Vainberg, Variational method and method of monotone operators in the theory of nonlinear equations, Halsted Press (A division of John Wiley Sons), New York–Toronto, Ont.; Israel Program for Scientific Translations, Jerusalem–London, 1973, xi+356 pp. | MR | MR | Zbl | Zbl
[27] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford–Elmsford, NY, 1982, xiv+589 pp. | MR | MR | Zbl
[28] M. V. Fedoryuk, Asymptotic analysis. Linear ordinary differential equations, Springer-Verlag, Berlin, 1993, viii+363 pp. | DOI | MR | MR | Zbl | Zbl
[29] O. Kallenberg, Random measures, Akademie-Verlag, Berlin, 1975, vi+104 pp. | MR | Zbl
[30] J. Kerstan, K. Matthes, J. Mecke, Unbegrenzt teilbare Punktprozesse, Math. Lehrbucher und Monogr., XXVII, Akademie-Verlag, Berlin, 1974, x+420 pp. | MR | MR | Zbl | Zbl
[31] H. Cramér, M. R. Leadbetter, Stationary and related stochastic processes. Sample function properties and their applications, John Wiley Sons, Inc., New York–London–Sydney, 1967, xii+348 pp. | MR | Zbl | Zbl