Brownian motion on $[0,\infty)$ with linear drift, reflected at zero: exact asymptotics for ergodic means
Sbornik. Mathematics, Tome 208 (2017) no. 7, pp. 1014-1048

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Brownian motion $X_\mu(t)$ on the half-axis $[0,\infty)$ with linear drift $\mu$, reflected at zero and for fixed numbers $p>0$, $\delta>0$, $d>0$, $a \geqslant 0$, we calculate the exact asymptotics as $T\to\infty$ of the mathematical expectations and probabilities $$ \mathsf E\biggl[\exp\biggl\{-\delta\!\!\int_0^T \!\!X_\mu^p(t)\,dt\biggr\}\biggm| X_\mu(0)=a\biggr], \mathsf P\biggl\{\frac1 T\!\int_0^T \!\!X_\mu^p(t)\,dt\!\!d\biggm| X_\mu(0)=a\biggr\}, $$ as well as of their conditional versions. For $p=1$ we give explicit formulae for the emerging constants via the Airy function. We consider an application of the results obtained to the problem of studying the behaviour of a Brownian particle in a gravitational field in a container bounded below by an impenetrable wall when $\mu=-mg/(2kT_{\mathrm K})$, where $m$ is the mass of the Brownian particle, $g$ is the gravitational acceleration, $k$ is the Boltzmann constant, $T_{\mathrm K}$ is the temperature in the Kelvin scale. The analysis is conducted by the Laplace method for the sojourn time of homogeneous Markov processes. Bibliography: 31 titles.
Keywords: Brownian motion with drift, reflected at zero, ergodicity, sojourn time, large deviations, Airy function, Schrödinger operator.
@article{SM_2017_208_7_a4,
     author = {V. R. Fatalov},
     title = {Brownian motion on $[0,\infty)$ with linear drift, reflected at zero: exact asymptotics for ergodic means},
     journal = {Sbornik. Mathematics},
     pages = {1014--1048},
     publisher = {mathdoc},
     volume = {208},
     number = {7},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_7_a4/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Brownian motion on $[0,\infty)$ with linear drift, reflected at zero: exact asymptotics for ergodic means
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1014
EP  - 1048
VL  - 208
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_7_a4/
LA  - en
ID  - SM_2017_208_7_a4
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Brownian motion on $[0,\infty)$ with linear drift, reflected at zero: exact asymptotics for ergodic means
%J Sbornik. Mathematics
%D 2017
%P 1014-1048
%V 208
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_7_a4/
%G en
%F SM_2017_208_7_a4
V. R. Fatalov. Brownian motion on $[0,\infty)$ with linear drift, reflected at zero: exact asymptotics for ergodic means. Sbornik. Mathematics, Tome 208 (2017) no. 7, pp. 1014-1048. http://geodesic.mathdoc.fr/item/SM_2017_208_7_a4/