Brownian motion on $[0,\infty)$ with linear drift, reflected at zero: exact asymptotics for ergodic means
Sbornik. Mathematics, Tome 208 (2017) no. 7, pp. 1014-1048
Voir la notice de l'article provenant de la source Math-Net.Ru
For the Brownian motion $X_\mu(t)$ on the half-axis $[0,\infty)$ with linear drift $\mu$, reflected at zero and for fixed numbers $p>0$, $\delta>0$, $d>0$, $a \geqslant 0$, we calculate the exact asymptotics as $T\to\infty$ of the mathematical expectations and probabilities
$$
\mathsf E\biggl[\exp\biggl\{-\delta\!\!\int_0^T \!\!X_\mu^p(t)\,dt\biggr\}\biggm| X_\mu(0)=a\biggr],
\mathsf P\biggl\{\frac1 T\!\int_0^T \!\!X_\mu^p(t)\,dt\!\!d\biggm| X_\mu(0)=a\biggr\},
$$
as well as of their conditional versions. For $p=1$ we give explicit formulae for the emerging constants via the Airy function. We consider an application of the results obtained to the problem of studying the behaviour of a Brownian particle in a gravitational field in a container bounded below by an impenetrable wall when $\mu=-mg/(2kT_{\mathrm K})$, where $m$ is the mass of the Brownian particle, $g$ is the gravitational acceleration, $k$ is the Boltzmann constant, $T_{\mathrm K}$ is the temperature in the Kelvin scale. The analysis is conducted by the Laplace method for the sojourn time of homogeneous Markov processes.
Bibliography: 31 titles.
Keywords:
Brownian motion with drift, reflected at zero, ergodicity, sojourn time, large deviations, Airy function, Schrödinger operator.
@article{SM_2017_208_7_a4,
author = {V. R. Fatalov},
title = {Brownian motion on $[0,\infty)$ with linear drift, reflected at zero: exact asymptotics for ergodic means},
journal = {Sbornik. Mathematics},
pages = {1014--1048},
publisher = {mathdoc},
volume = {208},
number = {7},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_7_a4/}
}
TY - JOUR AU - V. R. Fatalov TI - Brownian motion on $[0,\infty)$ with linear drift, reflected at zero: exact asymptotics for ergodic means JO - Sbornik. Mathematics PY - 2017 SP - 1014 EP - 1048 VL - 208 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2017_208_7_a4/ LA - en ID - SM_2017_208_7_a4 ER -
V. R. Fatalov. Brownian motion on $[0,\infty)$ with linear drift, reflected at zero: exact asymptotics for ergodic means. Sbornik. Mathematics, Tome 208 (2017) no. 7, pp. 1014-1048. http://geodesic.mathdoc.fr/item/SM_2017_208_7_a4/