Calabi-Yau compactifications of toric Landau-Ginzburg models for smooth Fano threefolds
Sbornik. Mathematics, Tome 208 (2017) no. 7, pp. 992-1013 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that smooth Fano threefolds have toric Landau-Ginzburg models. More precisely, we prove that their Landau-Ginzburg models, represented as Laurent polynomials, admit compactifications to families of K3 surfaces, and we describe their fibres over infinity. We also give an explicit construction of Landau-Ginzburg models for del Pezzo surfaces and any divisors on them. Bibliography: 40 titles.
Keywords: Fano threefolds, toric Landau-Ginzburg models
Mots-clés : Calabi-Yau compactifications.
@article{SM_2017_208_7_a3,
     author = {V. V. Przyjalkowski},
     title = {Calabi-Yau compactifications of toric {Landau-Ginzburg} models for smooth {Fano} threefolds},
     journal = {Sbornik. Mathematics},
     pages = {992--1013},
     year = {2017},
     volume = {208},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_7_a3/}
}
TY  - JOUR
AU  - V. V. Przyjalkowski
TI  - Calabi-Yau compactifications of toric Landau-Ginzburg models for smooth Fano threefolds
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 992
EP  - 1013
VL  - 208
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_7_a3/
LA  - en
ID  - SM_2017_208_7_a3
ER  - 
%0 Journal Article
%A V. V. Przyjalkowski
%T Calabi-Yau compactifications of toric Landau-Ginzburg models for smooth Fano threefolds
%J Sbornik. Mathematics
%D 2017
%P 992-1013
%V 208
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2017_208_7_a3/
%G en
%F SM_2017_208_7_a3
V. V. Przyjalkowski. Calabi-Yau compactifications of toric Landau-Ginzburg models for smooth Fano threefolds. Sbornik. Mathematics, Tome 208 (2017) no. 7, pp. 992-1013. http://geodesic.mathdoc.fr/item/SM_2017_208_7_a3/

[1] A. Givental, “A mirror theorem for toric complete intersections”, Topological field theory, primitive forms and related topics (Kyoto, 1996), Progr. Math., 160, Birkhäuser Boston, Boston, MA, 1998, 141–175 | MR | Zbl

[2] V. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties”, J. Algebraic Geom., 3:3 (1994), 493–535 | MR | Zbl

[3] V. V. Przyjalkowski, “Weak Landau–Ginzburg models for smooth Fano threefolds”, Izv. Math., 77:4 (2013), 772–794 | DOI | DOI | MR | Zbl

[4] N. O. Ilten, J. Lewis, V. Przyjalkowski, “Toric degenerations of Fano threefolds giving weak Landau–Ginzburg models”, J. Algebra, 374 (2013), 104–121 | DOI | MR | Zbl

[5] T. Coates, A. Corti, S. Galkin, V. Golyshev, A. Kasprzyk, Fano varieties and extremal Laurent polynomials, A collaborative research blog http://coates.ma.ic.ac.uk/fanosearch

[6] N. Ilten, A. Kasprzyk, L. Katzarkov, V. Przyjalkowski, D. Sakovics, Projecting Fanos in the mirror, in preparation

[7] C. Doran, A. Harder, L. Katzarkov, J. Lewis, V. Przyjalkowski, Modularity of Fano threefolds, in preparation

[8] T. Coates, A. Corti, S. Galkin, A. Kasprzyk, “Quantum periods for 3-dimensional Fano manifolds”, Geom. Topol., 20:1 (2016), 103–256 | DOI | MR | Zbl

[9] C. F. Doran, A. Harder, “Toric degenerations and Laurent polynomials related to Givental's Landau–Ginzburg models”, Canad. J. Math., 68:4 (2016), 784–815 | DOI | MR | Zbl

[10] D. Auroux, L. Katzarkov, D. Orlov, “Mirror symmetry for Del Pezzo surfaces: vanishing cycles and coherent sheaves”, Invent. Math., 166:3 (2006), 537–582 | DOI | MR | Zbl

[11] K. Ueda, M. Yamazaki, “Homological mirror symmetry for toric orbifolds of toric del Pezzo surfaces”, J. Reine Angew. Math., 2013:680 (2013), 1–22 | DOI | MR | Zbl

[12] V. A. Iskovskikh, Yu. G. Prokhorov, “Fano varieties”, Algebraic geometry V, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999, 1–247 | MR | Zbl

[13] V. V. Przhiyalkovskii, “O kompaktifikatsiyakh Kalabi–Yau toricheskikh modelei Landau–Ginzburga dlya polnykh peresechenii Fano”, Matem. zametki, 102 (2017) (to appear); V. V. Przyjalkowski, “On Calabi–Yau compactifications of toric Landau–Ginzburg models for Fano complete intersections”, Math. Notes, 102 (2018); arXiv: 1701.08532

[14] V. I. Danilov, “The geometry of toric varieties”, Russian Math. Surveys, 33:2 (1978), 97–154 | DOI | MR | Zbl

[15] P. Jahnke, I. Radloff, “Gorenstein Fano threefolds with base points in the anticanonical system”, Compos. Math., 142:2 (2006), 422–432 | DOI | MR | Zbl

[16] V. V. Przhiyalkovskii, I. A. Chel'tsov, K. A. Shramov, “Hyperelliptic and trigonal Fano threefolds”, Izv. Math., 69:2 (2005), 365–421 | DOI | DOI | MR | Zbl

[17] Yu. I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, Amer. Math. Soc. Colloq. Publ., 47, Amer. Math. Soc., Providence, RI, 1999, xiv+303 pp. | DOI | MR | Zbl

[18] S. O. Gorchinskiy, D. V. Osipov, “Continuous homomorphisms between algebras of iterated Laurent series over a ring”, Proc. Steklov Inst. Math., 294 (2016), 47–66 | DOI | DOI | MR | Zbl

[19] S. O. Gorchinskiy, D. V. Osipov, “Higher-dimensional Contou-Carrère symbol and continuous automorphisms”, Funct. Anal. Appl., 50:4 (2016), 268–280 | DOI | DOI | Zbl

[20] S. O. Gorchinskiy, D. V. Osipov, “A higher-dimensional Contou-Carrère symbol: local theory”, Sb. Math., 206:9 (2015), 1191–1259 | DOI | DOI | MR | Zbl

[21] V. Przyjalkowski, “On Landau–Ginzburg models for Fano varieties”, Commun. Number Theory Phys., 1:4 (2007), 713–728 | DOI | MR | Zbl

[22] L. Katzarkov, M. Kontsevich, T. Pantev, “Bogomolov–Tian–Todorov theorems for Landau–Ginzburg models”, J. Differential Geom., 105:1 (2017), 55–117 | DOI | MR | Zbl

[23] V. Przyjalkowski, C. Shramov, “Laurent phenomenon for Landau–Ginzburg models of complete intersections in Grassmannians of planes”, Bull. Korean Math. Soc., 2017, no. 4 (to appear); arXiv: 1409.3729

[24] V. V. Przyjalkowski, C. A. Shramov, “On weak Landau–Ginzburg models for complete intersections in Grassmannians”, Russian Math. Surveys, 69:6 (2014), 1129–1131 | DOI | DOI | MR | Zbl

[25] V. V. Przyjalkowski, C. A. Shramov, “Laurent phenomenon for Landau–Ginzburg models of complete intersections in Grassmannians”, Proc. Steklov Inst. Math., 290 (2015), 91–102 | DOI | DOI | MR | Zbl

[26] T. Coates, A. Kasprzyk, T. Prince, “Four-dimensional Fano toric complete intersections”, Proc. R. Soc. A, 471:2175 (2015), 20140704, 14 pp. | DOI | MR

[27] V. A. Iskovskikh, “Fano 3-folds. I”, Math. USSR-Izv., 11:3 (1977), 485–527 | DOI | MR | Zbl

[28] V. A. Iskovskikh, “Fano 3-folds. II”, Math. USSR-Izv., 12:3 (1978), 469–506 | DOI | MR | Zbl

[29] S. Mori, S. Mukai, “Classification of {F}ano $3$-folds with $B_{2}\geq 2$”, Manuscripta Math., 36:2 (1981/1982), 147–162 ; “Erratum”, 110:3 (2003), 407 | DOI | MR | Zbl | DOI | MR

[30] I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp. | DOI | MR | Zbl

[31] P. del Pezzo, “Sulle superficie dell'$n^{\mathrm{mo}}$ ordine immerse nello spazio di $n$ dimensioni”, Rend. Circ. Mat. Palermo, 1:1 (1887), 241–271 | DOI | Zbl

[32] M. Akhtar, T. Coates, S. Galkin, A. M. Kasprzyk, “Minkowski polynomials and mutations”, SIGMA, 8 (2012), 094, 17 pp. | DOI | MR | Zbl

[33] V. Przyjalkowski, “Hori–Vafa mirror models for complete intersections in weighted projective spaces and weak Landau–Ginzburg models”, Cent. Eur. J. Math., 9:5 (2011), 972–977 | DOI | MR | Zbl

[34] L. Katzarkov, V. Przyjalkowski, “Landau–Ginzburg models – old and new”, Proceedings of the Gökova geometry–topology conference 2011, Int. Press, Somerville, MA, 2012, 97–124 | MR | Zbl

[35] R. Miranda, “Smooth models for elliptic threefolds”, The birational geometry of degenerations (Cambridge, MA, 1981), Progr. Math., 29, Birkhäuser, Boston, MA, 1983, 85–133 | MR | Zbl

[36] A. Harder, The geometry of Landau–Ginzburg models, Thesis (Ph.D.), Univ. of Alberta, 2016, 302 pp. | DOI

[37] V. Lunts, V. Przyjalkowski, Landau–Ginzburg Hodge numbers for mirrors of del Pezzo surfaces, arXiv: 1607.08880

[38] I. Cheltsov, L. Katzarkov, V. Przyjalkowski, “Birational geometry via moduli spaces”, Birational geometry, rational curves, and arithmetic, Springer, New York, 2013, 93–132 | DOI | MR | Zbl

[39] V. Przyjalkowski, C. Shramov, “On Hodge numbers of complete intersections and Landau–Ginzburg models”, Int. Math. Res. Not. IMRN, 2015:21 (2015), 11302–11332 | DOI | MR | Zbl

[40] M. Gross, L. Katzarkov, H. Ruddat, “Towards mirror symmetry for varieties of general type”, Adv. Math., 308 (2017), 208–275 ; arXiv: 1202.4042 | DOI | MR | Zbl