Calabi-Yau compactifications of toric Landau-Ginzburg models for smooth Fano threefolds
Sbornik. Mathematics, Tome 208 (2017) no. 7, pp. 992-1013
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that smooth Fano threefolds have toric Landau-Ginzburg models. More precisely, we prove that their Landau-Ginzburg models, represented as Laurent polynomials, admit compactifications to families of K3 surfaces, and we describe their fibres over infinity. We also give an explicit construction of Landau-Ginzburg models for del Pezzo surfaces and any divisors on them.
Bibliography: 40 titles.
Keywords:
Fano threefolds, toric Landau-Ginzburg models
Mots-clés : Calabi-Yau compactifications.
Mots-clés : Calabi-Yau compactifications.
@article{SM_2017_208_7_a3,
author = {V. V. Przyjalkowski},
title = {Calabi-Yau compactifications of toric {Landau-Ginzburg} models for smooth {Fano} threefolds},
journal = {Sbornik. Mathematics},
pages = {992--1013},
publisher = {mathdoc},
volume = {208},
number = {7},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_7_a3/}
}
TY - JOUR AU - V. V. Przyjalkowski TI - Calabi-Yau compactifications of toric Landau-Ginzburg models for smooth Fano threefolds JO - Sbornik. Mathematics PY - 2017 SP - 992 EP - 1013 VL - 208 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2017_208_7_a3/ LA - en ID - SM_2017_208_7_a3 ER -
V. V. Przyjalkowski. Calabi-Yau compactifications of toric Landau-Ginzburg models for smooth Fano threefolds. Sbornik. Mathematics, Tome 208 (2017) no. 7, pp. 992-1013. http://geodesic.mathdoc.fr/item/SM_2017_208_7_a3/