@article{SM_2017_208_7_a2,
author = {A. N. Panov},
title = {Restriction and induction for supercharacters of finite groups of triangular type},
journal = {Sbornik. Mathematics},
pages = {977--991},
year = {2017},
volume = {208},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_7_a2/}
}
A. N. Panov. Restriction and induction for supercharacters of finite groups of triangular type. Sbornik. Mathematics, Tome 208 (2017) no. 7, pp. 977-991. http://geodesic.mathdoc.fr/item/SM_2017_208_7_a2/
[1] P. Diaconis, I. M. Isaacs, “Supercharacters and superclasses for algebra groups”, Trans. Amer. Math. Soc., 360:5 (2008), 2359–2392 | DOI | MR | Zbl
[2] C. A. M. André, “Basic characters of the unitriangular group”, J. Algebra, 175:1 (1995), 287–319 | DOI | MR | Zbl
[3] C. A. M. André, “Basic sums of coadjoint orbits of the unitriangular group”, J. Algebra, 176:3 (1995), 959–1000 | DOI | MR | Zbl
[4] C. A. M. André, “The basic character table of the unitriangular group”, J. Algebra, 241:1 (2001), 437–471 | DOI | MR | Zbl
[5] C. A. M. André, “The basic characters of the unitriangular group (for arbitrary primes)”, Proc. Amer. Math. Soc., 130:7 (2002), 1943–1954 | DOI | MR | Zbl
[6] Ning Yan, Representation theory of the finite unipotent linear groups, Ph.D. diss., Univ. of Pennsylvania, 2001, 41 pp. ; Representations of finite unipotent linear groups by the method of clusters, arXiv: 1004.2674 | MR
[7] J. L. Brumbaugh, M. Bulkow, P. S. Fleming, L. A. Garcia German, S. R. Garcia, G. Karaali, M. Michal, A. P. Turner, Hong Suh, “Supercharacters, exponential sums and the uncertainty principle”, J. Number Theory, 144 (2014), 151–175 | DOI | MR | Zbl
[8] C. F. Fowler, S. R. Garcia, G. Karaali, “Ramanujan sums as supercharacters”, Ramanujan J., 35:2 (2014), 205–241 | DOI | MR | Zbl
[9] N. Thiem, “Branching rules in the ring of superclass functions of unipotent upper-triangular matrices”, J. Algebraic Combin., 31:2 (2010), 267–298 | DOI | MR | Zbl
[10] N. Thiem, V. Venkateswaran, “Restricting supercharacters of the finite group of unipotent uppertriangular matrices”, Electron. J. Combin., 16:1 (2009), 23, 32 pp. | MR | Zbl
[11] E. Marberg, N. Thiem, “Superinduction for pattern groups”, J. Algebra, 321:12 (2009), 3681–3703 | DOI | MR | Zbl
[12] E. Arias-Castro, P. Diaconis, R. Stanley, “A super-class walk on upper-triangular matrices”, J. Algebra, 278:2 (2004), 739–765 | DOI | MR | Zbl
[13] A. O. F. Hendrickson, “Supercharacter theory costructions corresponding to Schur ring products”, Comm. Algebra, 40:12 (2012), 4420–4438 | DOI | MR | Zbl
[14] S. Andrews, “Supercharacter theories constructed by the method of little groups”, Comm. Algebra, 44:5 (2016), 2152–2179 | DOI | MR | Zbl
[15] M. Aguiar, C. André, C. Benedetti, N. Bergeron, Zhi Chen, P. Diaconis, A. Hendrickson, S. Hsiao, I. M. Isaacs, A. Jedwab, K. Johnson, G. Karaali, A. Lauve, Tung Le, S. Lewis, Huilan Li, K. Magaarg, E. Marberg, J.-Ch. Novelli, Amy Pang, F. Saliola, L. Tevlin, J.-Y. Thibon, N. Thiem, V. Venkateswaran, C. R. Vinroot, Ning Yan, M. Zabrocki, “Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras”, Adv. Math., 229:4 (2012), 2310–2337 | DOI | MR | Zbl
[16] A. N. Panov, “Teoriya superkharakterov dlya grupp obratimykh elementov privedennykh algebr”, Algebra i analiz, 27:6 (2015), 242–259 ; A. N. Panov, “Supercharacter theory for groups of invertible elements of reduced algebras”, St. Petersburg Math. J., 27:6 (2016), 1035–1047 ; arXiv: 1409.5565 | MR | Zbl | DOI
[17] A. N. Panov, “Supercharacters for the finite groups of triangular type”, Comm. Algebra (to appear)
[18] A. N. Panov, “Staroe i novoe v teorii superkharakterov konechnykh grupp”, Chebyshevskii sb., 16:4 (2015), 227–249
[19] R. S. Pierce, Associative algebras, Grad. Texts in Math., 88, Stud. Hist. Modern Sci., 9, Springer-Verlag, New York–Berlin, 1982, xii+436 pp. | DOI | MR | MR | Zbl | Zbl
[20] Ch. W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras, Pure Appl. Math., 11, Interscience Publishers (John Wiley Sons), New York–London, 1962, xiv+685 pp. | MR | MR | Zbl
[21] J.-P. Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1967, xii+135 pp. (not consecutively paged) | MR | Zbl | Zbl