On the rate of convergence as $t\to+\infty$ of the distributions of solutions to the stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere
Sbornik. Mathematics, Tome 208 (2017) no. 7, pp. 929-976 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with a nonlinear system of partial differential equations with parameters which describes the two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere on a rotating two-dimensional sphere. The right-hand side of the system is perturbed by white noise. A unique stationary measure for the Markov semigroup defined by the solutions of the Cauchy problem for this problem is considered. An estimate for the rate of convergence of the distributions of all solutions in a certain class of this system to the unique stationary measure as $t\to+\infty$ is proposed. A similar result is obtained for the equation of a barotropic atmosphere and the two-dimensional Navier-Stokes equation. A comparative analysis with some of the available related results is given for the latter. Bibliography: 39 titles.
Keywords: two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere, rate of convergence of the distributions of solutions to the stationary measure, the two-dimensional Navier-Stokes equation.
Mots-clés : white noise perturbation
@article{SM_2017_208_7_a1,
     author = {Yu. Yu. Klevtsova},
     title = {On the rate of convergence as $t\to+\infty$ of the distributions of solutions to the stationary measure for the stochastic system of the {Lorenz} model describing a~baroclinic atmosphere},
     journal = {Sbornik. Mathematics},
     pages = {929--976},
     year = {2017},
     volume = {208},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_7_a1/}
}
TY  - JOUR
AU  - Yu. Yu. Klevtsova
TI  - On the rate of convergence as $t\to+\infty$ of the distributions of solutions to the stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 929
EP  - 976
VL  - 208
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_7_a1/
LA  - en
ID  - SM_2017_208_7_a1
ER  - 
%0 Journal Article
%A Yu. Yu. Klevtsova
%T On the rate of convergence as $t\to+\infty$ of the distributions of solutions to the stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere
%J Sbornik. Mathematics
%D 2017
%P 929-976
%V 208
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2017_208_7_a1/
%G en
%F SM_2017_208_7_a1
Yu. Yu. Klevtsova. On the rate of convergence as $t\to+\infty$ of the distributions of solutions to the stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere. Sbornik. Mathematics, Tome 208 (2017) no. 7, pp. 929-976. http://geodesic.mathdoc.fr/item/SM_2017_208_7_a1/

[1] Yu. Yu. Klevtsova, “Well-posedness of the Cauchy problem for the stochastic system for the Lorenz model for a baroclinic atmosphere”, Sb. Math., 203:10 (2012), 1490–1517 | DOI | DOI | MR | Zbl

[2] Yu. Yu. Klevtsova, “On the existence of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere”, Sb. Math., 204:9 (2013), 1307–1331 | DOI | DOI | MR | Zbl

[3] Yu. Yu. Klevtsova, “The uniqueness of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere”, Sb. Math., 206:3 (2015), 421–469 | DOI | DOI | MR | Zbl

[4] B. V. Paltsev, Sfericheskie funktsii, Uchebno-metodicheskoe posobie, MFTI, M., 2000, 54 pp.

[5] V. P. Dymnikov, Ustoichivost i predskazuemost krupnomasshtabnykh atmosfernykh protsessov, IVM RAN, M., 2007, 283 pp.

[6] S. Kuksin, A. Shirikyan, “Coupling approach to white-forced nonlinear PDEs”, J. Math. Pures Appl., 81:6 (2002), 567–602 | DOI | MR | Zbl

[7] J. Bricmont, A. Kupiainen, R. Lefevere, “Exponential mixing of the 2D stochastic Navier–Stokes dynamics”, Comm. Math. Phys., 230:1 (2002), 87–132 | DOI | MR | Zbl

[8] J. C. Mattingly, “Exponential convergence for the stochastically forced Navier–Stokes equations and other partially dissipative dynamics”, Comm. Math. Phys., 230:3 (2002), 421–462 | DOI | MR | Zbl

[9] B. Goldys, B. Maslowski, “Exponential ergodicity for stochastic Burgers and 2D Navier–Stokes equations”, J. Funct. Anal., 226:1 (2005), 230–255 | DOI | MR | Zbl

[10] C. Odasso, “Exponential mixing for stochastic PDEs: the non-additive case”, Probab. Theory Relat. Fields, 140:1 (2008), 41–82 | DOI | MR | Zbl

[11] M. Hairer, J. C. Mattingly, “Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations”, Ann. Probab., 36:6 (2008), 2050–2091 | DOI | MR | Zbl

[12] E. N. Lorenz, “Energy and numerical weather prediction”, Tellus, 12:4 (1960), 364–373 | DOI

[13] V. N. Krupchatnikov, G. P. Kurbatkin, Modelirovanie krupnomasshtabnoi dinamiki atmosfery. Metody diagnoza obschei tsirkulyatsii, VTs SO AN SSSR, Novosibirsk, 1991, 114 pp.

[14] A. A. Il'in, A. N. Filatov, “On unique solvability of the Navier–Stokes equations on the two-dimensional sphere”, Soviet Math. Dokl., 38:1 (1989), 9–13 | MR | Zbl

[15] Yu. N. Skiba, Matematicheskie voprosy dinamiki vyazkoi barotropnoi zhidkosti na vraschayuscheisya sfere, OVM AN SSSR, M., 1989, 178 pp.

[16] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968, xx+372 pp. | MR | MR | Zbl | Zbl

[17] R. M. Dudley, Real analysis and probability, Cambridge Stud. Adv. Math., 74, 2nd ed., Cambridge Univ. Press, Cambridge, 2002, x+555 pp. | DOI | MR | Zbl

[18] S. Kuksin, A. Shirikyan, Mathematics of two-dimensional turbulence, Cambridge Tracts in Math., 194, Cambridge Univ. Press, Cambridge, 2012, xvi+320 pp. | DOI | MR | Zbl

[19] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia Math. Appl., 45, Cambridge Univ. Press, Cambridge, 1992, xviii+454 pp. | DOI | MR | Zbl

[20] A. A. Ilyin, “Lieb–Thirring inequalities on some manifolds”, J. Spectr. Theory, 2:1 (2012), 57–78 | DOI | MR | Zbl

[21] A. N. Shiryaev, Veroyatnost, v. 1, Elementarnaya teoriya veroyatnostei. Matematicheskie osnovaniya. Predelnye teoremy, 3-e izd., pererab. i dop., MTsNMO, M., 2004, 520 pp.; т. 2, Суммы и последовательности случайных величин – стационарные, мартингалы, марковские цепи, 408 с.; A. N. Shiryaev, Probability, Grad. Texts in Math., 95, 2nd ed., Springer-Verlag, New York, 1996, xvi+624 с. | DOI | MR | Zbl

[22] A. V. Bulinskii, A. N. Shiryaev, Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 408 pp.

[23] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. 1, 2, Graylock Press, Albany, NY, 1957, 1961, ix+129 pp., ix+128 pp. | MR | MR | Zbl

[24] V. M. Kadets, Kurs funktsionalnogo analiza, Uchebnoe posobie dlya studentov mekh.-matem. f-ta, KhNU im. V. N. Karazina, Kharkov, 2006, 607 pp. | MR | Zbl

[25] J. Neveu, Bases mathématiques du calcul des probabilités, Masson et Cie, Éditeurs, Paris, 1964, xii+203 pp. | MR | MR | Zbl | Zbl

[26] A. Shirikyan, “Exponential mixing for randomly forced partial differential equations: method of coupling”, Instability in models connected with fluid flows, v. II, Int. Math. Ser. (N. Y.), 7, Springer, New York, 2008, 155–188 | DOI | MR | Zbl

[27] D. Martirosyan, “Exponential mixing for the white-forced damped nonlinear wave equation”, Evol. Equ. Control Theory, 3:4 (2014), 645–670 | DOI | MR | Zbl

[28] A. D. Wentzell, A course in the theory of stochastic processes, McGraw-Hill International Book Co., New York, 1981, x+304 pp. | MR | MR | Zbl | Zbl

[29] O. Knill, Probability theory and stochastic processes with applications, Overseas Press, New Delhi, 2009, 373 pp.

[30] Yu. N. Skiba, “Spectral approximation in the numerical stability study of nondivergent viscous flows on a sphere”, Numer. Methods Partial Differential Equations, 14:2 (1998), 143–157 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[31] P. Mörters, Y. Peres, Brownian motion, Camb. Ser. Stat. Probab. Math., 30, Cambridge Univ. Press, Cambridge, 2010, xii+403 pp. | DOI | MR | Zbl

[32] A. A. Ilyin, “Best constants in Sobolev inequalities on the sphere and in Euclidean space”, J. London Math. Soc. (2), 59:1 (1999), 263–286 | DOI | MR | Zbl

[33] Yu. N. Skiba, Ob odnoznachnoi razreshimosti uravneniya barotropnogo vikhrya vyazkoi zhidkosti v klassakh obobschennykh funktsii na sfere, Preprint No 194, OVM AN SSSR, M., 1988, 56 pp. | MR

[34] L. A. Lusternik, V. J. Sobolev, Elements of functional analysis, Hindustan Publishing Corp., Delhi; Halsted Press [John Wiley Sons, Inc.], New York, 1974, xvi+360 pp. | MR | MR | Zbl | Zbl

[35] N. Ikeda, Sh. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Math. Library, 24, North-Holland Publishing Co., Amsterdam–New York; Kodansha, Ltd., Tokyo, 1981, xiv+464 pp. | MR | MR | Zbl | Zbl

[36] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl

[37] V. P. Dymnikov, A. N. Filatov, Mathematics of climate modeling, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, Inc., Boston, MA, 1997, xvi+264 pp. | MR | Zbl | Zbl

[38] A. S. Gorelov, “Dimension of the attractor for a two-layer baroclinic model”, Dokl. Earth Sci., 345A:9 (1996), 1–7 | MR

[39] S. Kuksin, A. Maiocchi, “The limit of small Rossby numbers for randomly forced quasi-geostrophic equation on $\beta$-plane”, Nonlinearity, 28:7 (2015), 2319–2341 | DOI | MR | Zbl