Mots-clés : white noise perturbation
@article{SM_2017_208_7_a1,
author = {Yu. Yu. Klevtsova},
title = {On the rate of convergence as $t\to+\infty$ of the distributions of solutions to the stationary measure for the stochastic system of the {Lorenz} model describing a~baroclinic atmosphere},
journal = {Sbornik. Mathematics},
pages = {929--976},
year = {2017},
volume = {208},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_7_a1/}
}
TY - JOUR AU - Yu. Yu. Klevtsova TI - On the rate of convergence as $t\to+\infty$ of the distributions of solutions to the stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere JO - Sbornik. Mathematics PY - 2017 SP - 929 EP - 976 VL - 208 IS - 7 UR - http://geodesic.mathdoc.fr/item/SM_2017_208_7_a1/ LA - en ID - SM_2017_208_7_a1 ER -
%0 Journal Article %A Yu. Yu. Klevtsova %T On the rate of convergence as $t\to+\infty$ of the distributions of solutions to the stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere %J Sbornik. Mathematics %D 2017 %P 929-976 %V 208 %N 7 %U http://geodesic.mathdoc.fr/item/SM_2017_208_7_a1/ %G en %F SM_2017_208_7_a1
Yu. Yu. Klevtsova. On the rate of convergence as $t\to+\infty$ of the distributions of solutions to the stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere. Sbornik. Mathematics, Tome 208 (2017) no. 7, pp. 929-976. http://geodesic.mathdoc.fr/item/SM_2017_208_7_a1/
[1] Yu. Yu. Klevtsova, “Well-posedness of the Cauchy problem for the stochastic system for the Lorenz model for a baroclinic atmosphere”, Sb. Math., 203:10 (2012), 1490–1517 | DOI | DOI | MR | Zbl
[2] Yu. Yu. Klevtsova, “On the existence of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere”, Sb. Math., 204:9 (2013), 1307–1331 | DOI | DOI | MR | Zbl
[3] Yu. Yu. Klevtsova, “The uniqueness of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere”, Sb. Math., 206:3 (2015), 421–469 | DOI | DOI | MR | Zbl
[4] B. V. Paltsev, Sfericheskie funktsii, Uchebno-metodicheskoe posobie, MFTI, M., 2000, 54 pp.
[5] V. P. Dymnikov, Ustoichivost i predskazuemost krupnomasshtabnykh atmosfernykh protsessov, IVM RAN, M., 2007, 283 pp.
[6] S. Kuksin, A. Shirikyan, “Coupling approach to white-forced nonlinear PDEs”, J. Math. Pures Appl., 81:6 (2002), 567–602 | DOI | MR | Zbl
[7] J. Bricmont, A. Kupiainen, R. Lefevere, “Exponential mixing of the 2D stochastic Navier–Stokes dynamics”, Comm. Math. Phys., 230:1 (2002), 87–132 | DOI | MR | Zbl
[8] J. C. Mattingly, “Exponential convergence for the stochastically forced Navier–Stokes equations and other partially dissipative dynamics”, Comm. Math. Phys., 230:3 (2002), 421–462 | DOI | MR | Zbl
[9] B. Goldys, B. Maslowski, “Exponential ergodicity for stochastic Burgers and 2D Navier–Stokes equations”, J. Funct. Anal., 226:1 (2005), 230–255 | DOI | MR | Zbl
[10] C. Odasso, “Exponential mixing for stochastic PDEs: the non-additive case”, Probab. Theory Relat. Fields, 140:1 (2008), 41–82 | DOI | MR | Zbl
[11] M. Hairer, J. C. Mattingly, “Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations”, Ann. Probab., 36:6 (2008), 2050–2091 | DOI | MR | Zbl
[12] E. N. Lorenz, “Energy and numerical weather prediction”, Tellus, 12:4 (1960), 364–373 | DOI
[13] V. N. Krupchatnikov, G. P. Kurbatkin, Modelirovanie krupnomasshtabnoi dinamiki atmosfery. Metody diagnoza obschei tsirkulyatsii, VTs SO AN SSSR, Novosibirsk, 1991, 114 pp.
[14] A. A. Il'in, A. N. Filatov, “On unique solvability of the Navier–Stokes equations on the two-dimensional sphere”, Soviet Math. Dokl., 38:1 (1989), 9–13 | MR | Zbl
[15] Yu. N. Skiba, Matematicheskie voprosy dinamiki vyazkoi barotropnoi zhidkosti na vraschayuscheisya sfere, OVM AN SSSR, M., 1989, 178 pp.
[16] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968, xx+372 pp. | MR | MR | Zbl | Zbl
[17] R. M. Dudley, Real analysis and probability, Cambridge Stud. Adv. Math., 74, 2nd ed., Cambridge Univ. Press, Cambridge, 2002, x+555 pp. | DOI | MR | Zbl
[18] S. Kuksin, A. Shirikyan, Mathematics of two-dimensional turbulence, Cambridge Tracts in Math., 194, Cambridge Univ. Press, Cambridge, 2012, xvi+320 pp. | DOI | MR | Zbl
[19] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia Math. Appl., 45, Cambridge Univ. Press, Cambridge, 1992, xviii+454 pp. | DOI | MR | Zbl
[20] A. A. Ilyin, “Lieb–Thirring inequalities on some manifolds”, J. Spectr. Theory, 2:1 (2012), 57–78 | DOI | MR | Zbl
[21] A. N. Shiryaev, Veroyatnost, v. 1, Elementarnaya teoriya veroyatnostei. Matematicheskie osnovaniya. Predelnye teoremy, 3-e izd., pererab. i dop., MTsNMO, M., 2004, 520 pp.; т. 2, Суммы и последовательности случайных величин – стационарные, мартингалы, марковские цепи, 408 с.; A. N. Shiryaev, Probability, Grad. Texts in Math., 95, 2nd ed., Springer-Verlag, New York, 1996, xvi+624 с. | DOI | MR | Zbl
[22] A. V. Bulinskii, A. N. Shiryaev, Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 408 pp.
[23] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. 1, 2, Graylock Press, Albany, NY, 1957, 1961, ix+129 pp., ix+128 pp. | MR | MR | Zbl
[24] V. M. Kadets, Kurs funktsionalnogo analiza, Uchebnoe posobie dlya studentov mekh.-matem. f-ta, KhNU im. V. N. Karazina, Kharkov, 2006, 607 pp. | MR | Zbl
[25] J. Neveu, Bases mathématiques du calcul des probabilités, Masson et Cie, Éditeurs, Paris, 1964, xii+203 pp. | MR | MR | Zbl | Zbl
[26] A. Shirikyan, “Exponential mixing for randomly forced partial differential equations: method of coupling”, Instability in models connected with fluid flows, v. II, Int. Math. Ser. (N. Y.), 7, Springer, New York, 2008, 155–188 | DOI | MR | Zbl
[27] D. Martirosyan, “Exponential mixing for the white-forced damped nonlinear wave equation”, Evol. Equ. Control Theory, 3:4 (2014), 645–670 | DOI | MR | Zbl
[28] A. D. Wentzell, A course in the theory of stochastic processes, McGraw-Hill International Book Co., New York, 1981, x+304 pp. | MR | MR | Zbl | Zbl
[29] O. Knill, Probability theory and stochastic processes with applications, Overseas Press, New Delhi, 2009, 373 pp.
[30] Yu. N. Skiba, “Spectral approximation in the numerical stability study of nondivergent viscous flows on a sphere”, Numer. Methods Partial Differential Equations, 14:2 (1998), 143–157 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[31] P. Mörters, Y. Peres, Brownian motion, Camb. Ser. Stat. Probab. Math., 30, Cambridge Univ. Press, Cambridge, 2010, xii+403 pp. | DOI | MR | Zbl
[32] A. A. Ilyin, “Best constants in Sobolev inequalities on the sphere and in Euclidean space”, J. London Math. Soc. (2), 59:1 (1999), 263–286 | DOI | MR | Zbl
[33] Yu. N. Skiba, Ob odnoznachnoi razreshimosti uravneniya barotropnogo vikhrya vyazkoi zhidkosti v klassakh obobschennykh funktsii na sfere, Preprint No 194, OVM AN SSSR, M., 1988, 56 pp. | MR
[34] L. A. Lusternik, V. J. Sobolev, Elements of functional analysis, Hindustan Publishing Corp., Delhi; Halsted Press [John Wiley Sons, Inc.], New York, 1974, xvi+360 pp. | MR | MR | Zbl | Zbl
[35] N. Ikeda, Sh. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Math. Library, 24, North-Holland Publishing Co., Amsterdam–New York; Kodansha, Ltd., Tokyo, 1981, xiv+464 pp. | MR | MR | Zbl | Zbl
[36] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl
[37] V. P. Dymnikov, A. N. Filatov, Mathematics of climate modeling, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, Inc., Boston, MA, 1997, xvi+264 pp. | MR | Zbl | Zbl
[38] A. S. Gorelov, “Dimension of the attractor for a two-layer baroclinic model”, Dokl. Earth Sci., 345A:9 (1996), 1–7 | MR
[39] S. Kuksin, A. Maiocchi, “The limit of small Rossby numbers for randomly forced quasi-geostrophic equation on $\beta$-plane”, Nonlinearity, 28:7 (2015), 2319–2341 | DOI | MR | Zbl