Volume growth of quasihyperbolic balls
Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 902-914 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The purpose of this paper is to study the notion of the quasihyperbolic volume and to find growth estimates for the quasihyperbolic volume of balls in a domain $G\subset{\mathbb R}^n$ in terms of their radii. Bibliography: 23 titles.
Keywords: uniform porosity, $Q$-regularity.
Mots-clés : quasihyperbolic volume
@article{SM_2017_208_6_a7,
     author = {Xiaohui-H. Zhang and Riku Kl\'en and Ville Suomala and Matti Vuorinen},
     title = {Volume growth of quasihyperbolic balls},
     journal = {Sbornik. Mathematics},
     pages = {902--914},
     year = {2017},
     volume = {208},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_6_a7/}
}
TY  - JOUR
AU  - Xiaohui-H. Zhang
AU  - Riku Klén
AU  - Ville Suomala
AU  - Matti Vuorinen
TI  - Volume growth of quasihyperbolic balls
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 902
EP  - 914
VL  - 208
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_6_a7/
LA  - en
ID  - SM_2017_208_6_a7
ER  - 
%0 Journal Article
%A Xiaohui-H. Zhang
%A Riku Klén
%A Ville Suomala
%A Matti Vuorinen
%T Volume growth of quasihyperbolic balls
%J Sbornik. Mathematics
%D 2017
%P 902-914
%V 208
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2017_208_6_a7/
%G en
%F SM_2017_208_6_a7
Xiaohui-H. Zhang; Riku Klén; Ville Suomala; Matti Vuorinen. Volume growth of quasihyperbolic balls. Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 902-914. http://geodesic.mathdoc.fr/item/SM_2017_208_6_a7/

[1] Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, eds. M. Abramowitz, I. A. Stegun, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964, xiv+1046 pp. | MR | MR | Zbl | Zbl

[2] A. F. Beardon, The geometry of discrete groups, Grad. Texts in Math., 91, Springer-Verlag, New York, 1983, xii+337 pp. | DOI | MR | MR | Zbl | Zbl

[3] M. Bonk, J. Heinonen, S. Rohde, “Doubling conformal densities”, J. Reine Angew. Math., 2001:541 (2001), 117–141 | DOI | MR | Zbl

[4] K. Falconer, Fractal geometry. Mathematical foundations and applications, 2nd ed., John Wiley Sons, Inc., Hoboken, NJ, 2003, xxviii+337 pp. | DOI | MR | Zbl

[5] F. W. Gehring, K. Hag, The ubiquitous quasidisk, With contributions by O. J. Broch, Math. Surveys Monogr., 184, Amer. Math. Soc., Providence, RI, 2012, xii+171 pp. | DOI | MR | Zbl

[6] F. W. Gehring, B. G. Osgood, “Uniform domains and the quasi-hyperbolic metric”, J. Analyse Math., 36 (1979), 50–74 | DOI | MR | Zbl

[7] P. Hästö, Z. Ibragimov, D. Minda, S. Ponnusamy, S. Sahoo, “Isometries of some hyperbolic-type path metrics, and the hyperbolic medial axis”, In the tradition of Ahlfors–Bers, v. 4, Contemp. Math., 432, Amer. Math. Soc., Providence, RI, 2007, 63–74 | DOI | MR | Zbl

[8] J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001., x+140 pp. | DOI | MR | Zbl

[9] E. Järvenpää, M. Järvenpää, A. Käenmäki, T. Rajala, S. Rogovin, V. Suomala, “Packing dimension and Ahlfors regularity of porous sets in metric spaces”, Math. Z., 266:1 (2010), 83–105 | DOI | MR | Zbl

[10] A. Käenmäki, J. Lehrbäck, M. Vuorinen, “Dimensions, Whitney covers, and tubular neighborhoods”, Indiana Univ. Math. J., 62:6 (2013), 1861–1889 | DOI | MR | Zbl

[11] R. Klén, On hyperbolic type metrics, Diss., Univ. of Turku, Turku, Ann. Acad. Sci. Fenn. Math. Diss., 152, Suomalainen Tiedeakatemia, Helsinki, 2009, 142 pp. | MR | Zbl

[12] R. Klén, Y. Li, S. K. Sahoo, M. Vuorinen, “On the stability of $\varphi$-uniform domains”, Monatsh. Math., 174:2 (2014), 231–258 | DOI | MR | Zbl

[13] G. J. Martin, B. G. Osgood, “The quasihyperbolic metric and associated estimates on the hyperbolic metric”, J. Analyse Math., 47 (1986), 37–53 | DOI | MR | Zbl

[14] O. Martio, “Definitions for uniform domains”, Ann. Acad. Sci. Fenn. Ser. A I Math., 5:1 (1980), 197–205 | DOI | MR | Zbl

[15] O. Martio, M. Vuorinen, “Whitney cubes, $p$-capacity, and Minkowski content”, Exposition. Math., 5:1 (1987), 17–40 | MR | Zbl

[16] P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Stud. Adv. Math., 44, Cambridge Univ. Press, Cambridge, 1995, xii+343 pp. | DOI | MR | Zbl

[17] J. Milnor, “How to compute volume in hyperbolic space”, John Milnor: collected papers, v. 1, Geometry, Publish or Perish, Inc., Houston, TX, 1994, 189–212 | MR | Zbl

[18] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, N.J., 1970, xiv+290 pp. | MR | MR | Zbl | Zbl

[19] J. Väisälä, “The free quasiworld. Freely quasiconformal and related maps in Banach spaces”, Quasiconformal geometry and dynamics (Lublin, 1996), Banach Center Publ., 48, Polish Acad. Sci. Inst. Math., Warsaw, 1999, 55–118 | MR | Zbl

[20] J. Väisälä, “Porous sets and quasisymmetric maps”, Trans. Amer. Math. Soc., 299:2 (1987), 525–533 | DOI | MR | Zbl

[21] J. Väisälä, “Uniform domains”, Tohoku Math. J. (2), 40:1 (1988), 101–118 | DOI | MR | Zbl

[22] M. Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Math., 1319, Springer-Verlag, Berlin, 1988, xx+209 pp. | DOI | MR | Zbl

[23] M. Vuorinen, “Conformal invariants and quasiregular mappings”, J. Analyse Math., 45 (1985), 69–115 | DOI | MR | Zbl