The negative parts of the sums of sine series with quasimonotonic coefficients
Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 878-901 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It has long been known that the sum of a sine series with positive coefficients tending to zero monotonically is positive in some right half-neighbourhood of zero. The paper investigates whether the sums of series with quasimonotonic coefficients retain this property (or a weaker version of it). Bibliography: 6 titles.
Keywords: sine series with quasimonotonic coefficients.
@article{SM_2017_208_6_a6,
     author = {A. Yu. Popov and A. P. Solodov},
     title = {The negative parts of the sums of~sine~series with quasimonotonic coefficients},
     journal = {Sbornik. Mathematics},
     pages = {878--901},
     year = {2017},
     volume = {208},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_6_a6/}
}
TY  - JOUR
AU  - A. Yu. Popov
AU  - A. P. Solodov
TI  - The negative parts of the sums of sine series with quasimonotonic coefficients
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 878
EP  - 901
VL  - 208
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_6_a6/
LA  - en
ID  - SM_2017_208_6_a6
ER  - 
%0 Journal Article
%A A. Yu. Popov
%A A. P. Solodov
%T The negative parts of the sums of sine series with quasimonotonic coefficients
%J Sbornik. Mathematics
%D 2017
%P 878-901
%V 208
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2017_208_6_a6/
%G en
%F SM_2017_208_6_a6
A. Yu. Popov; A. P. Solodov. The negative parts of the sums of sine series with quasimonotonic coefficients. Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 878-901. http://geodesic.mathdoc.fr/item/SM_2017_208_6_a6/

[1] P. Hartman, A. Wintner, “On sine series with monotone coefficients”, J. London Math. Soc., 28:1 (1953), 102–104 | DOI | MR | Zbl

[2] W. H. Young, “On the integration of Fourier series”, Proc. London Math. Soc., S2-9:1 (1911), 449–462 | DOI | MR | Zbl

[3] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–New York, 1976, v+112 pp. | DOI | MR | MR | Zbl | Zbl

[4] S. B. Stechkin, “Trigonometric series with monotone type coefficients”, Proc. Steklov Inst. Math. (Suppl.), 2001, suppl. 1, S214–S224 | MR | Zbl

[5] S. A. Teljakovskii, G. A. Fomin, “On the convergence in the $L$-metric of Fourier series with quasi-monotone coefficients”, Proc. Steklov Inst. Math., 134 (1977), 351–355 | MR | Zbl

[6] S. Aljančić, R. Bojanić, M. Tomić, “Sur le comportement asymptotique au voisinage de zéro des séries trigonométriques de sinus à coefficients monotones”, Acad. Serbe Sci. Publ. Inst. Math., 10 (1956), 101–120 | MR | Zbl