Discrete uniqueness sets for functions with spectral gaps
Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 863-877

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that entire functions whose spectrum belongs to a fixed bounded set $S$ admit real uniformly discrete uniqueness sets. We show that the same is true for a much wider range of spaces of continuous functions. In particular, Sobolev spaces have this property whenever $S$ is a set of infinite measure having ‘periodic gaps’. The periodicity condition is crucial. For sets $S$ with randomly distributed gaps, we show that uniformly discrete sets $\Lambda$ satisfy a strong non-uniqueness property: every discrete function $c(\lambda)\in l^2(\Lambda)$ can be interpolated by an analytic $L^2$-function with spectrum in $S$. Bibliography: 9 titles.
Keywords: spectral gap, discrete uniqueness set, Sobolev space.
Mots-clés : Fourier transform
@article{SM_2017_208_6_a5,
     author = {Alexander Olevskii and Alexander Ulanovskii},
     title = {Discrete uniqueness sets for functions with spectral gaps},
     journal = {Sbornik. Mathematics},
     pages = {863--877},
     publisher = {mathdoc},
     volume = {208},
     number = {6},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_6_a5/}
}
TY  - JOUR
AU  - Alexander Olevskii
AU  - Alexander Ulanovskii
TI  - Discrete uniqueness sets for functions with spectral gaps
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 863
EP  - 877
VL  - 208
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_6_a5/
LA  - en
ID  - SM_2017_208_6_a5
ER  - 
%0 Journal Article
%A Alexander Olevskii
%A Alexander Ulanovskii
%T Discrete uniqueness sets for functions with spectral gaps
%J Sbornik. Mathematics
%D 2017
%P 863-877
%V 208
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_6_a5/
%G en
%F SM_2017_208_6_a5
Alexander Olevskii; Alexander Ulanovskii. Discrete uniqueness sets for functions with spectral gaps. Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 863-877. http://geodesic.mathdoc.fr/item/SM_2017_208_6_a5/