Discrete uniqueness sets for functions with spectral gaps
Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 863-877 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is well known that entire functions whose spectrum belongs to a fixed bounded set $S$ admit real uniformly discrete uniqueness sets. We show that the same is true for a much wider range of spaces of continuous functions. In particular, Sobolev spaces have this property whenever $S$ is a set of infinite measure having ‘periodic gaps’. The periodicity condition is crucial. For sets $S$ with randomly distributed gaps, we show that uniformly discrete sets $\Lambda$ satisfy a strong non-uniqueness property: every discrete function $c(\lambda)\in l^2(\Lambda)$ can be interpolated by an analytic $L^2$-function with spectrum in $S$. Bibliography: 9 titles.
Keywords: spectral gap, discrete uniqueness set, Sobolev space.
Mots-clés : Fourier transform
@article{SM_2017_208_6_a5,
     author = {Alexander Olevskii and Alexander Ulanovskii},
     title = {Discrete uniqueness sets for functions with spectral gaps},
     journal = {Sbornik. Mathematics},
     pages = {863--877},
     year = {2017},
     volume = {208},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_6_a5/}
}
TY  - JOUR
AU  - Alexander Olevskii
AU  - Alexander Ulanovskii
TI  - Discrete uniqueness sets for functions with spectral gaps
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 863
EP  - 877
VL  - 208
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_6_a5/
LA  - en
ID  - SM_2017_208_6_a5
ER  - 
%0 Journal Article
%A Alexander Olevskii
%A Alexander Ulanovskii
%T Discrete uniqueness sets for functions with spectral gaps
%J Sbornik. Mathematics
%D 2017
%P 863-877
%V 208
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2017_208_6_a5/
%G en
%F SM_2017_208_6_a5
Alexander Olevskii; Alexander Ulanovskii. Discrete uniqueness sets for functions with spectral gaps. Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 863-877. http://geodesic.mathdoc.fr/item/SM_2017_208_6_a5/

[1] N. K. Bary, A treatise on trigonometric series, v. I, II, A Pergamon Press Book The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | MR | Zbl

[2] A. Beurling, P. Malliavin, “On the closure of characters and the zeros of entire functions”, Acta Math., 118 (1967), 79–93 | DOI | MR | Zbl

[3] H. J. Landau, “A sparse regular sequence of exponentials closed on large sets”, Bull. Amer. Math. Soc., 70:4 (1964), 566–569 | DOI | MR | Zbl

[4] B. Ya. Levin, Lectures on entire functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996, xvi+248 pp. | MR | Zbl

[5] A. Olevskiĭ, A. Ulanovskii, “Universal sampling and interpolation of band-limited signals”, Geom. Funct. Anal., 18:3 (2008), 1029–1052 | DOI | MR | Zbl

[6] A. Olevskiĭ, A. Ulanovskiĭ, “Approximation of discrete functions and size of spectrum”, Algebra i analiz, 21:6 (2009), 227–240 ; St. Petersburg Math. J., 21:6 (2010), 1015–1025 | MR | Zbl | DOI

[7] A. Olevskii, A. Ulanovskii, “Uniqueness sets for unbounded spectra”, C. R. Math. Acad. Sci. Paris, 349:11-12 (2011), 679–681 | DOI | MR | Zbl

[8] A. Olevskii, A. Ulanovskii, Functions with disconnected spectrum: sampling, interpolation, translates, Univ. Lecture Ser., 65, Amer. Math. Soc., Providence, RI, 2016, x+138 pp. | DOI | MR | Zbl

[9] A. Ulanovskii, “On Landau's phenomenon in $\mathbf R^n$”, Math. Scand., 88:1 (2001), 72–78 | DOI | MR | Zbl