Mots-clés : Fourier transform
@article{SM_2017_208_6_a5,
author = {Alexander Olevskii and Alexander Ulanovskii},
title = {Discrete uniqueness sets for functions with spectral gaps},
journal = {Sbornik. Mathematics},
pages = {863--877},
year = {2017},
volume = {208},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_6_a5/}
}
Alexander Olevskii; Alexander Ulanovskii. Discrete uniqueness sets for functions with spectral gaps. Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 863-877. http://geodesic.mathdoc.fr/item/SM_2017_208_6_a5/
[1] N. K. Bary, A treatise on trigonometric series, v. I, II, A Pergamon Press Book The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | MR | Zbl
[2] A. Beurling, P. Malliavin, “On the closure of characters and the zeros of entire functions”, Acta Math., 118 (1967), 79–93 | DOI | MR | Zbl
[3] H. J. Landau, “A sparse regular sequence of exponentials closed on large sets”, Bull. Amer. Math. Soc., 70:4 (1964), 566–569 | DOI | MR | Zbl
[4] B. Ya. Levin, Lectures on entire functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996, xvi+248 pp. | MR | Zbl
[5] A. Olevskiĭ, A. Ulanovskii, “Universal sampling and interpolation of band-limited signals”, Geom. Funct. Anal., 18:3 (2008), 1029–1052 | DOI | MR | Zbl
[6] A. Olevskiĭ, A. Ulanovskiĭ, “Approximation of discrete functions and size of spectrum”, Algebra i analiz, 21:6 (2009), 227–240 ; St. Petersburg Math. J., 21:6 (2010), 1015–1025 | MR | Zbl | DOI
[7] A. Olevskii, A. Ulanovskii, “Uniqueness sets for unbounded spectra”, C. R. Math. Acad. Sci. Paris, 349:11-12 (2011), 679–681 | DOI | MR | Zbl
[8] A. Olevskii, A. Ulanovskii, Functions with disconnected spectrum: sampling, interpolation, translates, Univ. Lecture Ser., 65, Amer. Math. Soc., Providence, RI, 2016, x+138 pp. | DOI | MR | Zbl
[9] A. Ulanovskii, “On Landau's phenomenon in $\mathbf R^n$”, Math. Scand., 88:1 (2001), 72–78 | DOI | MR | Zbl