Discrete uniqueness sets for functions with spectral gaps
Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 863-877
Voir la notice de l'article provenant de la source Math-Net.Ru
It is well known that entire functions whose spectrum belongs to a fixed bounded set $S$ admit real uniformly discrete uniqueness sets. We show that the same is true for a much wider range of spaces of continuous functions. In particular, Sobolev spaces have this property whenever $S$ is a set of infinite measure having ‘periodic gaps’. The periodicity condition is crucial. For sets $S$ with randomly distributed gaps, we show that uniformly discrete sets $\Lambda$ satisfy a strong non-uniqueness property: every discrete function $c(\lambda)\in l^2(\Lambda)$ can be interpolated by an analytic $L^2$-function with spectrum in $S$.
Bibliography: 9 titles.
Keywords:
spectral gap, discrete uniqueness set, Sobolev space.
Mots-clés : Fourier transform
Mots-clés : Fourier transform
@article{SM_2017_208_6_a5,
author = {Alexander Olevskii and Alexander Ulanovskii},
title = {Discrete uniqueness sets for functions with spectral gaps},
journal = {Sbornik. Mathematics},
pages = {863--877},
publisher = {mathdoc},
volume = {208},
number = {6},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_6_a5/}
}
Alexander Olevskii; Alexander Ulanovskii. Discrete uniqueness sets for functions with spectral gaps. Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 863-877. http://geodesic.mathdoc.fr/item/SM_2017_208_6_a5/