Boundary value problems for a nonlinear elliptic equation
Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 842-862 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that the Dirichlet and Neumann problems for a nonlinear second-order elliptic equation have infinitely many solutions. The spectrum of these problems is studied and the weak convergence of the normed eigenfunctions to zero is established. Bibliography: 10 titles.
Keywords: nonlinear elliptic equation, Dirichlet problem, Neumann problem, eigenfunctions.
@article{SM_2017_208_6_a4,
     author = {Yu. V. Egorov},
     title = {Boundary value problems for a~nonlinear elliptic equation},
     journal = {Sbornik. Mathematics},
     pages = {842--862},
     year = {2017},
     volume = {208},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_6_a4/}
}
TY  - JOUR
AU  - Yu. V. Egorov
TI  - Boundary value problems for a nonlinear elliptic equation
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 842
EP  - 862
VL  - 208
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_6_a4/
LA  - en
ID  - SM_2017_208_6_a4
ER  - 
%0 Journal Article
%A Yu. V. Egorov
%T Boundary value problems for a nonlinear elliptic equation
%J Sbornik. Mathematics
%D 2017
%P 842-862
%V 208
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2017_208_6_a4/
%G en
%F SM_2017_208_6_a4
Yu. V. Egorov. Boundary value problems for a nonlinear elliptic equation. Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 842-862. http://geodesic.mathdoc.fr/item/SM_2017_208_6_a4/

[1] M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, A Pergamon Press Book The Macmillan Co., New York, 1964, xi+395 pp. | MR | MR | Zbl | Zbl

[2] A. Bahri, H. Berestycki, “A perturbation method in critical point theory and applications”, Trans. Amer. Math. Soc., 267:2 (1981), 1–32 | DOI | MR | Zbl

[3] A. Bahri, P. L. Lions, “Morse index of some min-max critical points. I. Application to multiplicity results”, Comm. Pure Appl. Math., 41:8 (1988), 1027–1037 | DOI | MR | Zbl

[4] A. Bahri, “Topological results on a certain class of functionals and application”, J. Funct. Anal., 41:3 (1981), 397–427 | DOI | MR | Zbl

[5] M. Struwe, “Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems”, Manuscripta Math., 32:3-4 (1980), 335–364 | DOI | MR | Zbl

[6] P. H. Rabinowitz, “Multiple critical points of perturbed symmetric functionals”, Trans. Amer. Math. Soc., 272:2 (1982), 753–769 | DOI | MR | Zbl

[7] Yu. V. Egorov, “On the Dirichlet problem for a nonlinear elliptic equation”, Sb. Math., 206:4 (2015), 480–488 | DOI | DOI | MR | Zbl

[8] M. Ôtani, “A remark on certain nonlinear elliptic equations”, Proc. Fac. Sci. Tokai Univ., 19 (1984), 23–28 | MR | Zbl

[9] R. Kurant, D. Gilbert, Metody matematicheskoi fiziki, v. 1, 3-e izd., GTTI, M.–L., 1933, 528 pp. ; R. Courant, D. Hilbert, Methoden der mathematischen Physik, v. 1, Grundlehren Math. Wiss., 12, 2nd ed., Springer, Berlin, 1931, xiv+469 pp. ; R. Courant, D. Hilbert, Methods of mathematical physics, т. 1, Interscience Publishers, Inc., New York, 1953, xv+561 с. | MR | Zbl | MR | Zbl | MR | Zbl

[10] Yu. Egorov, V. Kondratiev, On spectral theory of elliptic operators, Oper. Theory Adv. Appl., 89, Birkhäser Verlag, Basel, 1996, x+328 pp. | DOI | MR | Zbl