Boundary value problems for a~nonlinear elliptic equation
Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 842-862

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the Dirichlet and Neumann problems for a nonlinear second-order elliptic equation have infinitely many solutions. The spectrum of these problems is studied and the weak convergence of the normed eigenfunctions to zero is established. Bibliography: 10 titles.
Keywords: nonlinear elliptic equation, Dirichlet problem, Neumann problem, eigenfunctions.
@article{SM_2017_208_6_a4,
     author = {Yu. V. Egorov},
     title = {Boundary value problems for a~nonlinear elliptic equation},
     journal = {Sbornik. Mathematics},
     pages = {842--862},
     publisher = {mathdoc},
     volume = {208},
     number = {6},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_6_a4/}
}
TY  - JOUR
AU  - Yu. V. Egorov
TI  - Boundary value problems for a~nonlinear elliptic equation
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 842
EP  - 862
VL  - 208
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_6_a4/
LA  - en
ID  - SM_2017_208_6_a4
ER  - 
%0 Journal Article
%A Yu. V. Egorov
%T Boundary value problems for a~nonlinear elliptic equation
%J Sbornik. Mathematics
%D 2017
%P 842-862
%V 208
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_6_a4/
%G en
%F SM_2017_208_6_a4
Yu. V. Egorov. Boundary value problems for a~nonlinear elliptic equation. Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 842-862. http://geodesic.mathdoc.fr/item/SM_2017_208_6_a4/