Boundary value problems for a~nonlinear elliptic equation
Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 842-862
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the Dirichlet and Neumann problems for a nonlinear second-order elliptic equation have infinitely many solutions. The spectrum of these problems is studied and the weak convergence of the normed eigenfunctions to zero is established.
Bibliography: 10 titles.
Keywords:
nonlinear elliptic equation, Dirichlet problem, Neumann problem, eigenfunctions.
@article{SM_2017_208_6_a4,
author = {Yu. V. Egorov},
title = {Boundary value problems for a~nonlinear elliptic equation},
journal = {Sbornik. Mathematics},
pages = {842--862},
publisher = {mathdoc},
volume = {208},
number = {6},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_6_a4/}
}
Yu. V. Egorov. Boundary value problems for a~nonlinear elliptic equation. Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 842-862. http://geodesic.mathdoc.fr/item/SM_2017_208_6_a4/