Mots-clés : convex surface in Giroux's sense.
@article{SM_2017_208_6_a3,
author = {I. A. Dynnikov and M. V. Prasolov},
title = {Rectangular diagrams of surfaces: representability},
journal = {Sbornik. Mathematics},
pages = {791--841},
year = {2017},
volume = {208},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_6_a3/}
}
I. A. Dynnikov; M. V. Prasolov. Rectangular diagrams of surfaces: representability. Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 791-841. http://geodesic.mathdoc.fr/item/SM_2017_208_6_a3/
[1] D. Bennequin, “Entrelacements et équations de Pfaff”, Third Schnepfenried geometry conference (Schnepfenried, 1982), v. 1, Asterisque, 107-108, Soc. Math. France, Paris, 1983, 87–161 | MR | Zbl
[2] W. Chongchitmate, L. Ng, “An atlas of Legendrian knots”, Exp. Math., 22:1 (2013), 26–37 | DOI | MR | Zbl
[3] V. Colin, “Chirurgies d'indice un et isotopies de sphères dans les variétés de contact tendues”, C. R. Acad. Sci. Paris Sér. I Math., 324:6 (1997), 659–663 | DOI | MR | Zbl
[4] V. Colin, E. Giroux, K. Honda, “Finitude homotopique et isotopique des structures de contact tendues”, Publ. Math. Inst. Hautes Études Sci., 109 (2009), 245–293 | DOI | MR | Zbl
[5] I. A. Dynnikov, “Arc-presentations of links: monotonic simplification”, Fund. Math., 190 (2006), 29–76 | DOI | MR | Zbl
[6] I. A. Dynnikov, M. V. Prasolov, “Bypasses for rectangular diagrams. A proof of the Jones conjecture and related questions”, Trans. Moscow Math. Soc., 74 (2013), 97–144 | DOI | MR | Zbl
[7] Y. Eliashberg, “Contact 3-manifolds twenty years since J. Martinet's work”, Ann. Inst. Fourier (Grenoble), 42:1-2 (1992), 165–192 | DOI | MR | Zbl
[8] Y. Eliashberg, M. Fraser, “Classification of topologically trivial Legendrian knots”, Geometry, topology, and dynamics (Montreal, PQ, 1995), CRM Proc. Lecture Notes, 15, Amer. Math. Soc., Providence, RI, 1998, 17–51 | DOI | MR | Zbl
[9] Y. Eliashberg, M. Fraser, “Topologically trivial Legendrian knots”, J. Symplectic Geom., 7:2 (2009), 77–127 | DOI | MR | Zbl
[10] J. B. Etnyre, K. Honda, “On the nonexistence of tight contact structures”, Ann. of Math. (2), 153:3 (2001), 749–766 | DOI | MR | Zbl
[11] J. B. Etnyre, K. Honda, “Cabling and transverse simplicity”, Ann. of Math. (2), 162:3 (2005), 1305–1333 | DOI | MR | Zbl
[12] J. B. Etnyre, J. Van Horn-Morris, “Fibered transverse knots and the Bennequin bound”, Int. Math. Res. Not. IMRN, 2011:7 (2011), 1483–1509 | DOI | MR | Zbl
[13] E. Giroux, “Convexité en topologie de contact”, Comment. Math. Helv., 66:4 (1991), 637–677 | DOI | MR | Zbl
[14] W. Floyd, U. Oertel, “Incompressible surfaces via branched surfaces”, Topology, 23:1 (1984), 117–125 | DOI | MR | Zbl
[15] H. Geiges, An introduction to contact topology, Cambridge Stud. Adv. Math., 109, Cambridge Univ. Press, Cambridge, 2008, xvi+440 pp. | DOI | MR | Zbl
[16] E. Giroux, “Structures de contact en dimension trois et bifurcations des feuilletages de surfaces”, Invent. Math., 141:3 (2000), 615–689 | DOI | MR | Zbl
[17] G. D. Gospodinov, Relative knot invariants: properties and applications, arXiv: 0909.4326
[18] K. Honda, “On the classification of tight contact structures. I”, Geom. Topol., 4 (2000), 309–368 | DOI | MR | Zbl
[19] K. Honda, “3-dimensional methods in contact geometry”, Different faces of geometry, Int. Math. Ser. (N. Y.), 3, Kluwer/Plenum, New York, 2004, 47–86 | DOI | MR | Zbl
[20] T. Ito, K. Kawamuro, “Open book foliation”, Geom. Topol., 18:3 (2014), 1581–1634 | DOI | MR | Zbl
[21] Y. Kanda, “The classification of tight contact structures on the 3-torus”, Comm. Anal. Geom., 5:3 (1997), 413–438 | DOI | MR | Zbl
[22] M. Lackenby, “A polynomial upper bound on Reidemeister moves”, Ann. of Math. (2), 182:2 (2015), 491–564 | DOI | MR | Zbl
[23] C. Manolescu, P. Ozsváth, S. Sarkar, “A combinatorial description of knot Floer homology”, Ann. of Math. (2), 169:2 (2009), 633–660 | DOI | MR | Zbl
[24] P. Massot, “Geodesible contact structures on 3-manifolds”, Geom. Topol., 12:3 (2008), 1729–1776 | DOI | MR | Zbl
[25] P. Massot, “Topological methods in 3-dimensional contact geometry”, Contact and symplectic topology, Bolyai Soc. Math. Stud., 26, János Bolyai Math. Soc., Budapest, 2014, 27–83 ; arXiv: 1303.1063 | DOI | MR | Zbl
[26] S. Matveev, Algorithmic topology and classification of 3-manifolds, Algorithms Comput. Math., 9, Springer-Verlag, Berlin, 2003, xii+478 pp. | DOI | MR | Zbl
[27] D. O'Donnol, E. Pavelescu, “On Legendrian graphs”, Algebr. Geom. Topol., 12:3 (2012), 1273–1299 | DOI | MR | Zbl
[28] L. Ng, D. Thurston, “Grid diagrams, braids, and contact geometry”, Proceedings of Gökova geometry–topology conference 2008, Gökova Geometry–Topology Conference (GGT), Gökova, 2009, 120–136 | MR | Zbl
[29] M. Prasolov, “Rectangular diagrams of Legendrian graphs”, J. Knot Theory Ramifications, 23:13 (2014), 1450074, 28 pp. | DOI | MR | Zbl
[30] P. E. Pushkar', Yu. V. Chekanov, “Combinatorics of fronts of Legendrian links and the Arnol'd 4-conjectures”, Russian Math. Surveys, 60:1 (2005), 95–149 | DOI | DOI | MR | Zbl