Rectangular diagrams of surfaces: representability
Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 791-841 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Introduced here is a simple combinatorial way, which is called a rectangular diagram of a surface, to represent a surface in the three-sphere. It has a particularly nice relation to the standard contact structure on $\mathbb S^3$ and to rectangular diagrams of links. By using rectangular diagrams of surfaces it is intended, in particular, to develop a method to distinguish Legendrian knots. This requires a lot of technical work of which the present paper addresses only the first basic question: which isotopy classes of surfaces can be represented by a rectangular diagram? Roughly speaking, the answer is this: there is no restriction on the isotopy class of the surface, but there is a restriction on the rectangular diagram of the boundary link arising from the presentation of the surface. The result extends to Giroux's convex surfaces for which this restriction on the boundary has a natural meaning. In a subsequent paper, transformations of rectangular diagrams of surfaces will be considered and their properties will be studied. By using the formalism of rectangular diagrams of surfaces an annulus in $\mathbb S^3$ is produced here that is expected to be a counterexample to the following conjecture: if two Legendrian knots cobound an annulus and have zero Thurston-Bennequin numbers relative to this annulus, then they are Legendrian isotopic. Bibliography: 30 titles.
Keywords: rectangular diagram, Legendrian knot, contact structure
Mots-clés : convex surface in Giroux's sense.
@article{SM_2017_208_6_a3,
     author = {I. A. Dynnikov and M. V. Prasolov},
     title = {Rectangular diagrams of surfaces: representability},
     journal = {Sbornik. Mathematics},
     pages = {791--841},
     year = {2017},
     volume = {208},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_6_a3/}
}
TY  - JOUR
AU  - I. A. Dynnikov
AU  - M. V. Prasolov
TI  - Rectangular diagrams of surfaces: representability
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 791
EP  - 841
VL  - 208
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_6_a3/
LA  - en
ID  - SM_2017_208_6_a3
ER  - 
%0 Journal Article
%A I. A. Dynnikov
%A M. V. Prasolov
%T Rectangular diagrams of surfaces: representability
%J Sbornik. Mathematics
%D 2017
%P 791-841
%V 208
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2017_208_6_a3/
%G en
%F SM_2017_208_6_a3
I. A. Dynnikov; M. V. Prasolov. Rectangular diagrams of surfaces: representability. Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 791-841. http://geodesic.mathdoc.fr/item/SM_2017_208_6_a3/

[1] D. Bennequin, “Entrelacements et équations de Pfaff”, Third Schnepfenried geometry conference (Schnepfenried, 1982), v. 1, Asterisque, 107-108, Soc. Math. France, Paris, 1983, 87–161 | MR | Zbl

[2] W. Chongchitmate, L. Ng, “An atlas of Legendrian knots”, Exp. Math., 22:1 (2013), 26–37 | DOI | MR | Zbl

[3] V. Colin, “Chirurgies d'indice un et isotopies de sphères dans les variétés de contact tendues”, C. R. Acad. Sci. Paris Sér. I Math., 324:6 (1997), 659–663 | DOI | MR | Zbl

[4] V. Colin, E. Giroux, K. Honda, “Finitude homotopique et isotopique des structures de contact tendues”, Publ. Math. Inst. Hautes Études Sci., 109 (2009), 245–293 | DOI | MR | Zbl

[5] I. A. Dynnikov, “Arc-presentations of links: monotonic simplification”, Fund. Math., 190 (2006), 29–76 | DOI | MR | Zbl

[6] I. A. Dynnikov, M. V. Prasolov, “Bypasses for rectangular diagrams. A proof of the Jones conjecture and related questions”, Trans. Moscow Math. Soc., 74 (2013), 97–144 | DOI | MR | Zbl

[7] Y. Eliashberg, “Contact 3-manifolds twenty years since J. Martinet's work”, Ann. Inst. Fourier (Grenoble), 42:1-2 (1992), 165–192 | DOI | MR | Zbl

[8] Y. Eliashberg, M. Fraser, “Classification of topologically trivial Legendrian knots”, Geometry, topology, and dynamics (Montreal, PQ, 1995), CRM Proc. Lecture Notes, 15, Amer. Math. Soc., Providence, RI, 1998, 17–51 | DOI | MR | Zbl

[9] Y. Eliashberg, M. Fraser, “Topologically trivial Legendrian knots”, J. Symplectic Geom., 7:2 (2009), 77–127 | DOI | MR | Zbl

[10] J. B. Etnyre, K. Honda, “On the nonexistence of tight contact structures”, Ann. of Math. (2), 153:3 (2001), 749–766 | DOI | MR | Zbl

[11] J. B. Etnyre, K. Honda, “Cabling and transverse simplicity”, Ann. of Math. (2), 162:3 (2005), 1305–1333 | DOI | MR | Zbl

[12] J. B. Etnyre, J. Van Horn-Morris, “Fibered transverse knots and the Bennequin bound”, Int. Math. Res. Not. IMRN, 2011:7 (2011), 1483–1509 | DOI | MR | Zbl

[13] E. Giroux, “Convexité en topologie de contact”, Comment. Math. Helv., 66:4 (1991), 637–677 | DOI | MR | Zbl

[14] W. Floyd, U. Oertel, “Incompressible surfaces via branched surfaces”, Topology, 23:1 (1984), 117–125 | DOI | MR | Zbl

[15] H. Geiges, An introduction to contact topology, Cambridge Stud. Adv. Math., 109, Cambridge Univ. Press, Cambridge, 2008, xvi+440 pp. | DOI | MR | Zbl

[16] E. Giroux, “Structures de contact en dimension trois et bifurcations des feuilletages de surfaces”, Invent. Math., 141:3 (2000), 615–689 | DOI | MR | Zbl

[17] G. D. Gospodinov, Relative knot invariants: properties and applications, arXiv: 0909.4326

[18] K. Honda, “On the classification of tight contact structures. I”, Geom. Topol., 4 (2000), 309–368 | DOI | MR | Zbl

[19] K. Honda, “3-dimensional methods in contact geometry”, Different faces of geometry, Int. Math. Ser. (N. Y.), 3, Kluwer/Plenum, New York, 2004, 47–86 | DOI | MR | Zbl

[20] T. Ito, K. Kawamuro, “Open book foliation”, Geom. Topol., 18:3 (2014), 1581–1634 | DOI | MR | Zbl

[21] Y. Kanda, “The classification of tight contact structures on the 3-torus”, Comm. Anal. Geom., 5:3 (1997), 413–438 | DOI | MR | Zbl

[22] M. Lackenby, “A polynomial upper bound on Reidemeister moves”, Ann. of Math. (2), 182:2 (2015), 491–564 | DOI | MR | Zbl

[23] C. Manolescu, P. Ozsváth, S. Sarkar, “A combinatorial description of knot Floer homology”, Ann. of Math. (2), 169:2 (2009), 633–660 | DOI | MR | Zbl

[24] P. Massot, “Geodesible contact structures on 3-manifolds”, Geom. Topol., 12:3 (2008), 1729–1776 | DOI | MR | Zbl

[25] P. Massot, “Topological methods in 3-dimensional contact geometry”, Contact and symplectic topology, Bolyai Soc. Math. Stud., 26, János Bolyai Math. Soc., Budapest, 2014, 27–83 ; arXiv: 1303.1063 | DOI | MR | Zbl

[26] S. Matveev, Algorithmic topology and classification of 3-manifolds, Algorithms Comput. Math., 9, Springer-Verlag, Berlin, 2003, xii+478 pp. | DOI | MR | Zbl

[27] D. O'Donnol, E. Pavelescu, “On Legendrian graphs”, Algebr. Geom. Topol., 12:3 (2012), 1273–1299 | DOI | MR | Zbl

[28] L. Ng, D. Thurston, “Grid diagrams, braids, and contact geometry”, Proceedings of Gökova geometry–topology conference 2008, Gökova Geometry–Topology Conference (GGT), Gökova, 2009, 120–136 | MR | Zbl

[29] M. Prasolov, “Rectangular diagrams of Legendrian graphs”, J. Knot Theory Ramifications, 23:13 (2014), 1450074, 28 pp. | DOI | MR | Zbl

[30] P. E. Pushkar', Yu. V. Chekanov, “Combinatorics of fronts of Legendrian links and the Arnol'd 4-conjectures”, Russian Math. Surveys, 60:1 (2005), 95–149 | DOI | DOI | MR | Zbl