Rectangular diagrams of surfaces: representability
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 791-841
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Introduced here is a simple combinatorial way, which is called a rectangular diagram of a surface, to represent a surface in the three-sphere. It has a particularly nice relation to the standard contact structure on $\mathbb S^3$ and to rectangular diagrams of links. By using rectangular diagrams of surfaces it is intended, in particular, to develop a method to distinguish Legendrian knots. This requires a lot of technical work of which the present paper addresses only the first basic question: which isotopy classes of surfaces can be represented by a rectangular diagram? Roughly speaking, the answer is this: there is no restriction on the isotopy class of the surface, but there is a restriction on the rectangular diagram of the boundary link arising from the presentation of the surface. The result extends to Giroux's convex surfaces for which this restriction on the boundary has a natural meaning. In a subsequent paper, transformations of rectangular diagrams of surfaces will be considered and their properties will be studied. By using the formalism of rectangular diagrams of surfaces an annulus in $\mathbb S^3$ is produced here that is expected to be a counterexample to the following conjecture: if two Legendrian knots cobound an annulus and have zero Thurston-Bennequin numbers relative to this annulus, then they are Legendrian isotopic.
Bibliography: 30 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
rectangular diagram, Legendrian knot, contact structure
Mots-clés : convex surface in Giroux's sense.
                    
                  
                
                
                Mots-clés : convex surface in Giroux's sense.
@article{SM_2017_208_6_a3,
     author = {I. A. Dynnikov and M. V. Prasolov},
     title = {Rectangular diagrams of surfaces: representability},
     journal = {Sbornik. Mathematics},
     pages = {791--841},
     publisher = {mathdoc},
     volume = {208},
     number = {6},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_6_a3/}
}
                      
                      
                    I. A. Dynnikov; M. V. Prasolov. Rectangular diagrams of surfaces: representability. Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 791-841. http://geodesic.mathdoc.fr/item/SM_2017_208_6_a3/
