Mots-clés : $q$-deformation.
@article{SM_2017_208_6_a2,
author = {Christopher Deninger and Young-Tak Oh},
title = {The universal deformation of the {Witt} ring scheme},
journal = {Sbornik. Mathematics},
pages = {764--790},
year = {2017},
volume = {208},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_6_a2/}
}
Christopher Deninger; Young-Tak Oh. The universal deformation of the Witt ring scheme. Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 764-790. http://geodesic.mathdoc.fr/item/SM_2017_208_6_a2/
[1] R. Auer, “A functorial property of nested Witt vectors”, J. Algebra, 252:2 (2002), 293–299 | DOI | MR | Zbl
[2] J. Cuntz, Ch. Deninger, “Witt vector rings and the relative de Rham Witt complex”, J. Algebra, 440 (2015), 545–593 | DOI | MR | Zbl
[3] M. Demazure, P. Gabriel, Groupes algébriques, v. I, Géométrie algébrique, généralités, groupes commutatifs, Masson Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970, xxvi+700 pp. | MR | Zbl
[4] L. Hesselholt, “The big de Rham–Witt complex”, Acta Math., 214:1 (2015), 135–207 | DOI | MR | Zbl
[5] C. Lenart, “Formal group-theoretic generalizations of the necklace algebra, including a $q$-deformation”, J. Algebra, 199:2 (1998), 703–732 | DOI | MR | Zbl
[6] Y.-T. Oh, “Nested Witt vectors and their $q$-deformation”, J. Algebra, 309:2 (2007), 683–710 | DOI | MR | Zbl
[7] Y.-T. Oh, Generalizing Witt vector construnction, arXiv: 1211.3508