The universal deformation of the Witt ring scheme
Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 764-790 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We determine the universal deformation over reduced base rings of the Witt ring scheme enhanced by a Frobenius lift and Verschiebung. It agrees with a $q$-deformation introduced earlier by the second author; we also give a simpler description for this. In the appendix we discuss a Witt vector theory for ind-rings which may be of independent interest. Bibliography: 7 titles.
Keywords: Witt ring
Mots-clés : $q$-deformation.
@article{SM_2017_208_6_a2,
     author = {Christopher Deninger and Young-Tak Oh},
     title = {The universal deformation of the {Witt} ring scheme},
     journal = {Sbornik. Mathematics},
     pages = {764--790},
     year = {2017},
     volume = {208},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_6_a2/}
}
TY  - JOUR
AU  - Christopher Deninger
AU  - Young-Tak Oh
TI  - The universal deformation of the Witt ring scheme
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 764
EP  - 790
VL  - 208
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_6_a2/
LA  - en
ID  - SM_2017_208_6_a2
ER  - 
%0 Journal Article
%A Christopher Deninger
%A Young-Tak Oh
%T The universal deformation of the Witt ring scheme
%J Sbornik. Mathematics
%D 2017
%P 764-790
%V 208
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2017_208_6_a2/
%G en
%F SM_2017_208_6_a2
Christopher Deninger; Young-Tak Oh. The universal deformation of the Witt ring scheme. Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 764-790. http://geodesic.mathdoc.fr/item/SM_2017_208_6_a2/

[1] R. Auer, “A functorial property of nested Witt vectors”, J. Algebra, 252:2 (2002), 293–299 | DOI | MR | Zbl

[2] J. Cuntz, Ch. Deninger, “Witt vector rings and the relative de Rham Witt complex”, J. Algebra, 440 (2015), 545–593 | DOI | MR | Zbl

[3] M. Demazure, P. Gabriel, Groupes algébriques, v. I, Géométrie algébrique, généralités, groupes commutatifs, Masson Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970, xxvi+700 pp. | MR | Zbl

[4] L. Hesselholt, “The big de Rham–Witt complex”, Acta Math., 214:1 (2015), 135–207 | DOI | MR | Zbl

[5] C. Lenart, “Formal group-theoretic generalizations of the necklace algebra, including a $q$-deformation”, J. Algebra, 199:2 (1998), 703–732 | DOI | MR | Zbl

[6] Y.-T. Oh, “Nested Witt vectors and their $q$-deformation”, J. Algebra, 309:2 (2007), 683–710 | DOI | MR | Zbl

[7] Y.-T. Oh, Generalizing Witt vector construnction, arXiv: 1211.3508