@article{SM_2017_208_6_a1,
author = {Dmitriy Bilyk and Michael T. Lacey},
title = {One-bit sensing, discrepancy and {Stolarsky's} principle},
journal = {Sbornik. Mathematics},
pages = {744--763},
year = {2017},
volume = {208},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_6_a1/}
}
Dmitriy Bilyk; Michael T. Lacey. One-bit sensing, discrepancy and Stolarsky's principle. Sbornik. Mathematics, Tome 208 (2017) no. 6, pp. 744-763. http://geodesic.mathdoc.fr/item/SM_2017_208_6_a1/
[1] C. Aistleitner, J. S. Brauchart, J. Dick, “Point sets on the sphere $\mathbb{S}^2$ with small spherical cap discrepancy”, Discrete Comput. Geom., 48:4 (2012), 990–1024 | DOI | MR | Zbl
[2] K. Ball, “The Ribe programme”, Séminaire Bourbaki, Exposés 1043–1058, v. 2011/2012, Astérisque, 352, Soc. Math. France, Paris, 2013, viii, 147–159, Exp. No. 1047 | MR | Zbl
[3] R. Baraniuk, M. Davenport, R. DeVore, M. Wakin, “A simple proof of the restricted isometry property for random matrices”, Constr. Approx., 28:3 (2008), 253–263 | DOI | MR | Zbl
[4] R. Baraniuk, S. Foucart, D. Needell, Y. Plan, M. Wootters, Exponential decay of reconstruction error from binary measurements of sparse signals, arXiv: 1407.8246
[5] J. Beck, “Some upper bounds in the theory of irregularities of distribution”, Acta Arith., 43:2 (1984), 115–130 | MR | Zbl
[6] J. Beck, “Sums of distances between points on a sphere – an application of the theory of irregularities of distribution to discrete geometry”, Mathematika, 31:1 (1984), 33–41 | DOI | MR | Zbl
[7] J. Beck, W. W. L. Chen, Irregularities of distribution, Cambridge Tracts in Math., 89, Cambridge Univ. Press, Cambridge, 1987, xiv+294 pp. | DOI | MR | Zbl
[8] J. J. Benedetto, M. Fickus, “Finite normalized tight frames”, Adv. Comput. Math., 18:2-4 (2003), 357–385 | DOI | MR | Zbl
[9] D. Bilyk, F. Dai, R. Matzke, Stolarsky principle and energy optimization on the sphere, arXiv: 1611.04420
[10] D. Bilyk, M. T. Lacey, Random tessellations, restricted isometric embeddings, and one bit sensing, arXiv: 1512.06697
[11] M. Blümlinger, “Slice discrepancy and irregularities of distribution on spheres”, Mathematika, 38:1 (1991), 105–116 | DOI | MR | Zbl
[12] P. Boufounos, R. Baraniuk, “1-bit compressive sensing”, 2008 42nd annual conference on information sciences and systems CISS, IEEE, Princeton, NJ, 2008, 16–21 | DOI
[13] J. Bourgain, J. Lindenstrauss, “Distribution of points on spheres and approximation by zonotopes”, Israel J. Math., 64:1 (1988), 25–31 | DOI | MR | Zbl
[14] J. S. Brauchart, J. Dick, “A simple proof of Stolarsky's invariance principle”, Proc. Amer. Math. Soc., 141:6 (2013), 2085–2096 | DOI | MR | Zbl
[15] J. S. Brauchart, J. Dick, E. B. Saff, I. H. Sloan, Y. G. Wang, R. S. Womersley, “Covering of spheres by spherical caps and worst-case error for equal weight cubature in Sobolev spaces”, J. Math. Anal. Appl., 431:2 (2015), 782–811 | DOI | MR | Zbl
[16] E. J. Candes, T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies?”, IEEE Trans. Inform. Theory, 52:12 (2006), 5406–5425 | DOI | MR | Zbl
[17] P. G. Casazza, D. Redmond, J. C. Tremain, “Real equiangular frames”, 2008 42nd annual conference on information sciences and systems, IEEE, Princeton, NJ, 2008, 715–720 | DOI
[18] B. Chazelle, The discrepancy method. Randomness and complexity, Cambridge Univ. Press, Cambridge, 2000, xviii+463 pp. | DOI | MR | Zbl
[19] A. Dvoretzky, “Some results on convex bodies and Banach spaces”, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, 123–160 | MR | Zbl
[20] U. Feige, G. Schechtman, “On the optimality of the random hyperplane rounding technique for MAX CUT”, Random Structures Algorithms, 20:3 (2002), 403–440 | DOI | MR | Zbl
[21] S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, New York, 2013, xviii+625 pp. | DOI | MR | Zbl
[22] K. G. Larsen, J. Nelson, “The Johnson–Lindenstrauss lemma is optimal for linear dimensionality reduction”, 43rd international colloquium on automata, languages, and programming (ICALP 2016) (Rome, 2016), LIPIcs, 55, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, 2016, 82, 11 pp. | DOI
[23] L. Jacques, K. Degraux, C. De Vleeschouwer, “Quantized iterative hard thresholding: bridging 1-bit and high-resolution quantized compressed sensing”, 10th international conference on sampling theory and applications (SampTA 2013), 2013, 105–108 http://www.eurasip.org/Proceedings/Ext/SampTA2013/papers/p105-jacques.pdf
[24] L. Jacques, J. N. Laska, P. T. Boufounos, R. G. Baraniuk, “Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors”, IEEE Trans. Inform. Theory, 59:4 (2013), 2082–2102 | DOI | MR
[25] P. Leopardi, “A partition of the unit sphere into regions of equal area and small diameter”, Electron. Trans. Numer. Anal., 25 (2006), 309–327 | MR | Zbl
[26] P. Leopardi, “Diameter bounds for equal area partitions of the unit sphere”, Electron. Trans. Numer. Anal., 35 (2009), 1–16 | MR | Zbl
[27] J. Matoušek, Geometric discrepancy. An illustrated guide, Algorithms Combin., 18, Springer-Verlag, Berlin, 1999, xii+288 pp. | DOI | MR | Zbl
[28] A. Naor, “An introduction to the Ribe program”, Jpn. J. Math., 7:2 (2012), 167–233 | DOI | MR | Zbl
[29] F. Pausinger, S. Steinerberger, “On the discrepancy of jittered sampling”, J. Complexity, 33 (2016), 199–216 ; arXiv: 1510.00251 | DOI | MR | Zbl
[30] Y. Plan, R. Vershynin, “One-bit compressed sensing by linear programming”, Comm. Pure Appl. Math., 66:8 (2013), 1275–1297 | DOI | MR | Zbl
[31] Y. Plan, R. Vershynin, “Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach”, IEEE Trans. Inform. Theory, 59:1 (2013), 482–494 | DOI | MR
[32] Y. Plan, R. Vershynin, “Dimension reduction by random hyperplane tessellations”, Discrete Comput. Geom., 51:2 (2014), 438–461 | DOI | MR | Zbl
[33] A. Reznikov, E. B. Saff, “The covering radius of randomly distributed points on a manifold”, Int. Math. Res. Not. IMRN, 2016:19 (2016), 6065–6094 | DOI | MR
[34] G. Schechtman, “Two observations regarding embedding subsets of Euclidean spaces in normed spaces”, Adv. Math., 200:1 (2006), 125–135 | DOI | MR | Zbl
[35] K. B. Stolarsky, “Sums of distances between points on a sphere. II”, Proc. Amer. Math. Soc., 41:2 (1973), 575–582 | DOI | MR | Zbl
[36] S. Tabachnikov, Geometry and billiards, Stud. Math. Libr., 30, Amer. Math. Soc., Providence, RI; Mathematics Advanced Study Semesters, University Park, PA, 2005, xii+176 pp. | DOI | MR | Zbl
[37] V. Temlyakov, Greedy approximation, Cambridge Monogr. Appl. Comput. Math., 20, Cambridge Univ. Press, Cambridge, 2011, xiv+418 pp. | DOI | MR | Zbl
[38] S. Torquato, “Reformulation of the covering and quantizer problems as ground states of interacting particles”, Phys. Rev. E (3), 82:5 (2010), 056109, 52 pp. ; arXiv: 1009.1443 | DOI
[39] R. Vershynin, “Introduction to the non-asymptotic analysis of random matrices”, Compressed sensing, Cambridge Univ. Press, Cambridge, 2012, 210–268 | DOI | MR