Invariants of the Cox rings of double flag varieties of low complexity for exceptional groups
Sbornik. Mathematics, Tome 208 (2017) no. 5, pp. 707-742 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find the algebras of unipotent invariants of the Cox rings for all double flag varieties of complexity $0$ and $1$ for the exceptional simple algebraic groups; namely, we obtain presentations of these algebras in terms of generators and relations. It is well known that such an algebra is free in the case of complexity $0$. In this paper, we show that, in the case of complexity $1$, the algebra in question is either a free algebra or a hypersurface. A similar result for classical groups was previously obtained by the author. Knowing the structure of this algebra enables one to decompose tensor products of some irreducible representations effectively into irreducible summands and to obtain some branching rules. Bibliography: 10 titles.
Keywords: double flag variety, Cox ring, complexity, tensor product of representations, branching problem.
@article{SM_2017_208_5_a4,
     author = {E. V. Ponomareva},
     title = {Invariants of the {Cox} rings of double flag varieties of low complexity for exceptional groups},
     journal = {Sbornik. Mathematics},
     pages = {707--742},
     year = {2017},
     volume = {208},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_5_a4/}
}
TY  - JOUR
AU  - E. V. Ponomareva
TI  - Invariants of the Cox rings of double flag varieties of low complexity for exceptional groups
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 707
EP  - 742
VL  - 208
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_5_a4/
LA  - en
ID  - SM_2017_208_5_a4
ER  - 
%0 Journal Article
%A E. V. Ponomareva
%T Invariants of the Cox rings of double flag varieties of low complexity for exceptional groups
%J Sbornik. Mathematics
%D 2017
%P 707-742
%V 208
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2017_208_5_a4/
%G en
%F SM_2017_208_5_a4
E. V. Ponomareva. Invariants of the Cox rings of double flag varieties of low complexity for exceptional groups. Sbornik. Mathematics, Tome 208 (2017) no. 5, pp. 707-742. http://geodesic.mathdoc.fr/item/SM_2017_208_5_a4/

[1] J. C. Jantzen, Representations of algebraic groups, Pure Appl. Math., 131, Academic Press, Inc., Boston, MA, 1987, xiv+443 pp. | MR | Zbl

[2] P. Littelmann, “On spherical double cones”, J. Algebra, 166:1 (1994), 142–157 | DOI | MR | Zbl

[3] D. I. Panyushev, “Complexity and rank of actions in invariant theory”, J. Math. Sci. (N. Y.), 95:1 (1999), 1925–1985 | DOI | MR | Zbl

[4] E. V. Ponomareva, “Invariants of the Cox rings of low-complexity double flag varieties for classical groups”, Trans. Moscow Math. Soc., 76:1 (2015), 71–133 | DOI | MR | Zbl

[5] E. V. Ponomareva, “Classification of double flag varieties of complexity 0 and 1”, Izv. Math., 77:5 (2013), 998–1020 | DOI | DOI | MR | Zbl

[6] I. V. Arzhantsev, U. Derenthal, J. Hausen, A. Laface, Cox rings, Cambridge Stud. Adv. Math., 144, Cambridge Univ. Press, Cambridge, 2015, viii+530 pp. | DOI | MR | Zbl

[7] S. Billey, V. Lakshmibai, Singular loci of Schubert varieties, Progr. Math., 182, Birkhäuser Boston, Inc., Boston, MA, 2000, xii+251 pp. | DOI | MR | Zbl

[8] D. A. Timashev, Homogeneous spaces and equivariant embeddings, Encyclopaedia Math. Sci., 138, Invariant Theory and Algebraic Transformation Groups, 8, Springer, Heidelberg, 2011, xxii+253 pp. | DOI | MR | Zbl

[9] A. L. Onishchik, È. B. Vinberg, Lie groups and algebraic groups, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1990, xx+328 pp. | DOI | MR | MR | Zbl | Zbl

[10] J. E. Humphreys, Linear algebraic groups, Grad. Texts Math., 21, Springer-Verlag, New York–Heidelberg, 1975, xiv+247 pp. | DOI | MR | MR | Zbl | Zbl