Mots-clés : norm.
@article{SM_2017_208_5_a3,
author = {I. L. Laut},
title = {Correlation between the norm and the geometry of minimal networks},
journal = {Sbornik. Mathematics},
pages = {684--706},
year = {2017},
volume = {208},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_5_a3/}
}
I. L. Laut. Correlation between the norm and the geometry of minimal networks. Sbornik. Mathematics, Tome 208 (2017) no. 5, pp. 684-706. http://geodesic.mathdoc.fr/item/SM_2017_208_5_a3/
[1] A. O. Ivanov, A. A. Tuzhilin, “Branching geodesics in normed spaces”, Izv. Math., 66:5 (2002), 905–948 | DOI | DOI | MR | Zbl
[2] D. P. Il'yutko, “Branching extremals of the functional of $\lambda$-normed length”, Sb. Math., 197:5 (2006), 705–726 | DOI | DOI | MR | Zbl
[3] D. P. Il'yutko, “Locally minimal trees in $n$-normed spaces”, Math. Notes, 74:5 (2003), 619–629 | DOI | DOI | MR | Zbl
[4] D. P. Il'yutko, “Geometry of extremal nets on $\lambda$-normed planes”, Moscow Univ. Math. Bull., 60:4 (2005), 39–41 | MR | Zbl
[5] K. J. Swanepoel, “The local Steiner problem in finite-dimensional normed spaces”, Discrete Comput. Geom., 37:3 (2007), 419–442 | DOI | MR | Zbl
[6] C. Benítez, M. Fernández, M. L. Soriano, “Location of the Fermat–Torricelli medians of three points”, Trans. Amer. Math. Soc., 354:12 (2002), 5027–5038 | DOI | MR | Zbl
[7] I. L. Laut, Z. N. Ovsyannikov, “The type of minimal branching geodesics defines the norm in a normed space”, J. Math. Sci. (N. Y.), 203:6 (2014), 799–805 | DOI | MR | Zbl
[8] A. Kriegl, P. W. Michor, The convenient setting of global analysis, Math. Surveys Monogr., 53, Amer. Math. Soc., Providence, RI, 1997, x+618 pp. | DOI | MR | Zbl
[9] H. Martini, K. J. Swanepoel, G. Weiss, “The Fermat–Torricelli problem in normed planes and spaces”, J. Optim. Theory Appl., 115:2 (2002), 283–314 | DOI | MR | Zbl
[10] D. Cieslik, Steiner minimal trees, Nonconvex Optim. Appl., 23, Kluwer Acad. Publ., Dordrecht, 1998, xii+319 pp. | DOI | MR | Zbl
[11] H. Martini, K. J. Swanepoel, G. Weiss, “The geometry of Minkowski spaces – a survey. Part I”, Expo. Math., 19:2 (2001), 97–142 | DOI | MR | Zbl
[12] R. E. Megginson, An introduction to Banach space theory, Grad. Texts in Math., 183, Springer-Verlag, New York, 1998, xx+596 pp. | DOI | MR | Zbl
[13] A. O. Ivanov, A. A. Tuzhilin, “Stabilization of locally minimal trees”, Math. Notes, 86:4 (2009), 483–492 | DOI | DOI | MR | Zbl
[14] A. O. Ivanov, A. A. Tuzhilin, “The twist number of planar linear trees”, Sb. Math., 187:8 (1996), 1149–1195 | DOI | DOI | MR | Zbl
[15] E. N. Gilbert, H. O. Pollak, “Steiner minimal trees”, SIAM J. Appl. Math., 16:1 (1968), 1–29 | DOI | MR | Zbl