The average length of finite continued fractions with fixed denominator
Sbornik. Mathematics, Tome 208 (2017) no. 5, pp. 644-683

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1968 Heilbronn proved an asymptotic formula for the mean value of the lengths of continued fraction expansions of rational numbers with identical denominators. A new method is proposed for solving Heilbronn's problem and its generalizations. New estimates for the remainders, which improve the earlier results due to Porter (1975) and Ustinov (2005), are obtained. Bibliography: 28 titles.
Keywords: continued fraction, additive divisor problem
Mots-clés : convolution formula.
@article{SM_2017_208_5_a2,
     author = {V. A. Bykovskii and D. A. Frolenkov},
     title = {The average length of finite continued fractions with fixed denominator},
     journal = {Sbornik. Mathematics},
     pages = {644--683},
     publisher = {mathdoc},
     volume = {208},
     number = {5},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_5_a2/}
}
TY  - JOUR
AU  - V. A. Bykovskii
AU  - D. A. Frolenkov
TI  - The average length of finite continued fractions with fixed denominator
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 644
EP  - 683
VL  - 208
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_5_a2/
LA  - en
ID  - SM_2017_208_5_a2
ER  - 
%0 Journal Article
%A V. A. Bykovskii
%A D. A. Frolenkov
%T The average length of finite continued fractions with fixed denominator
%J Sbornik. Mathematics
%D 2017
%P 644-683
%V 208
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_5_a2/
%G en
%F SM_2017_208_5_a2
V. A. Bykovskii; D. A. Frolenkov. The average length of finite continued fractions with fixed denominator. Sbornik. Mathematics, Tome 208 (2017) no. 5, pp. 644-683. http://geodesic.mathdoc.fr/item/SM_2017_208_5_a2/