The average length of finite continued fractions with fixed denominator
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 208 (2017) no. 5, pp. 644-683
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In 1968 Heilbronn proved an asymptotic formula for the mean value of the lengths of continued fraction expansions of rational numbers with identical denominators. A new method is proposed for solving Heilbronn's problem and its generalizations. New estimates for the remainders, which improve the earlier results due to Porter (1975) and Ustinov (2005), are obtained.
Bibliography: 28 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
continued fraction, additive divisor problem
Mots-clés : convolution formula.
                    
                  
                
                
                Mots-clés : convolution formula.
@article{SM_2017_208_5_a2,
     author = {V. A. Bykovskii and D. A. Frolenkov},
     title = {The average length of finite continued fractions with fixed denominator},
     journal = {Sbornik. Mathematics},
     pages = {644--683},
     publisher = {mathdoc},
     volume = {208},
     number = {5},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_5_a2/}
}
                      
                      
                    TY - JOUR AU - V. A. Bykovskii AU - D. A. Frolenkov TI - The average length of finite continued fractions with fixed denominator JO - Sbornik. Mathematics PY - 2017 SP - 644 EP - 683 VL - 208 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2017_208_5_a2/ LA - en ID - SM_2017_208_5_a2 ER -
V. A. Bykovskii; D. A. Frolenkov. The average length of finite continued fractions with fixed denominator. Sbornik. Mathematics, Tome 208 (2017) no. 5, pp. 644-683. http://geodesic.mathdoc.fr/item/SM_2017_208_5_a2/
