Baire classes of Lyapunov invariants
Sbornik. Mathematics, Tome 208 (2017) no. 5, pp. 620-643

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that no relations exist (apart from inherent ones) between Baire classes of Lyapunov transformation invariants in the compact-open and uniform topologies on the space of linear differential systems. It is established that if a functional on the space of linear differential systems with the compact-open topology is the repeated limit of a multisequence of continuous functionals, then these can be chosen to be determined by the values of system coefficients on a finite interval of the half-line (one for each functional). It is proved that the Lyapunov exponents cannot be represented as the limit of a sequence of (not necessarily continuous) functionals such that each of these depends only on the restriction of the system to a finite interval of the half-line. Bibliography: 28 titles.
Keywords: linear differential systems, asymptotic equivalence, Lyapunov exponents
Mots-clés : Baire classes.
@article{SM_2017_208_5_a1,
     author = {V. V. Bykov},
     title = {Baire classes of {Lyapunov} invariants},
     journal = {Sbornik. Mathematics},
     pages = {620--643},
     publisher = {mathdoc},
     volume = {208},
     number = {5},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_5_a1/}
}
TY  - JOUR
AU  - V. V. Bykov
TI  - Baire classes of Lyapunov invariants
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 620
EP  - 643
VL  - 208
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_5_a1/
LA  - en
ID  - SM_2017_208_5_a1
ER  - 
%0 Journal Article
%A V. V. Bykov
%T Baire classes of Lyapunov invariants
%J Sbornik. Mathematics
%D 2017
%P 620-643
%V 208
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_5_a1/
%G en
%F SM_2017_208_5_a1
V. V. Bykov. Baire classes of Lyapunov invariants. Sbornik. Mathematics, Tome 208 (2017) no. 5, pp. 620-643. http://geodesic.mathdoc.fr/item/SM_2017_208_5_a1/