Relaxation and controllability in optimal control problems
Sbornik. Mathematics, Tome 208 (2017) no. 5, pp. 585-619 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with the relationships between necessary minimum conditions in an optimal control problem, minimum conditions in the corresponding relaxed problem and sufficient conditions for local controllability of the system. The results obtained are applied to a fairly general optimal control problem. Bibliography: 7 titles.
Keywords: optimal control, Pontryagin maximum principle, controllability, regularity, relaxation, mix of controls.
@article{SM_2017_208_5_a0,
     author = {E. R. Avakov and G. G. Magaril-Il'yaev},
     title = {Relaxation and controllability in optimal control problems},
     journal = {Sbornik. Mathematics},
     pages = {585--619},
     year = {2017},
     volume = {208},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_5_a0/}
}
TY  - JOUR
AU  - E. R. Avakov
AU  - G. G. Magaril-Il'yaev
TI  - Relaxation and controllability in optimal control problems
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 585
EP  - 619
VL  - 208
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_5_a0/
LA  - en
ID  - SM_2017_208_5_a0
ER  - 
%0 Journal Article
%A E. R. Avakov
%A G. G. Magaril-Il'yaev
%T Relaxation and controllability in optimal control problems
%J Sbornik. Mathematics
%D 2017
%P 585-619
%V 208
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2017_208_5_a0/
%G en
%F SM_2017_208_5_a0
E. R. Avakov; G. G. Magaril-Il'yaev. Relaxation and controllability in optimal control problems. Sbornik. Mathematics, Tome 208 (2017) no. 5, pp. 585-619. http://geodesic.mathdoc.fr/item/SM_2017_208_5_a0/

[1] R. V. Gamkrelidze, “Optimal sliding states”, Soviet Math. Dokl., 3 (1962), 559–562 | MR | Zbl

[2] R. V. Gamkrelidze, Principles of optimal control theory, Math. Concepts Methods Sci. Eng., 7, rev. ed., Plenum Press, New York–London, 1978, xii+175 pp. | MR | MR | Zbl

[3] J. Warga, “Relaxed variational problems”, J. Math. Anal. Appl., 4 (1962), 111–128 | DOI | MR | Zbl

[4] V. M. Tikhomirov, “Teorema o kasatelnom prostranstve i nekotorye ee modifikatsii”, Optimalnoe upravlenie, Matematicheskie voprosy upravleniya proizvodstvom, 7, Izd-vo Mosk. un-ta, M., 1977, 22–30

[5] E. R. Avakov, G. G. Magaril-Il'yaev, V. M. Tikhomirov, “Lagrange's principle in extremum problems with constraints”, Russian Math. Surveys, 68:3 (2013), 401–433 | DOI | DOI | MR | Zbl

[6] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimal control, Contemp. Soviet Math., Consultants Bureau, New York, 1987, xiv+309 pp. | DOI | MR | MR | Zbl | Zbl

[7] A. V. Arutyunov, G. G. Magaril-Ilyaev, V. M. Tikhomirov, Printsip maksimuma Pontryagina. Dokazatelstvo i prilozheniya, Faktorial, M., 2006, 144 pp.