Mots-clés : filtration
@article{SM_2017_208_4_a5,
author = {A. L. Smirnov and S. S. Yakovenko},
title = {Construction of a~linear filtration for bundles of rank $2$ on $\mathbf{P}^1_{\mathbb Z}$},
journal = {Sbornik. Mathematics},
pages = {568--584},
year = {2017},
volume = {208},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_4_a5/}
}
TY - JOUR
AU - A. L. Smirnov
AU - S. S. Yakovenko
TI - Construction of a linear filtration for bundles of rank $2$ on $\mathbf{P}^1_{\mathbb Z}$
JO - Sbornik. Mathematics
PY - 2017
SP - 568
EP - 584
VL - 208
IS - 4
UR - http://geodesic.mathdoc.fr/item/SM_2017_208_4_a5/
LA - en
ID - SM_2017_208_4_a5
ER -
A. L. Smirnov; S. S. Yakovenko. Construction of a linear filtration for bundles of rank $2$ on $\mathbf{P}^1_{\mathbb Z}$. Sbornik. Mathematics, Tome 208 (2017) no. 4, pp. 568-584. http://geodesic.mathdoc.fr/item/SM_2017_208_4_a5/
[1] Ch. C. Hanna, “Subbundles of vector bundles on the projective line”, J. Algebra, 52:2 (1978), 322–327 | DOI | MR | Zbl
[2] A. L. Smirnov, “On filtrations of vector bundles over $\operatorname{\mathbb P}^1_\mathbb Z$”, Arithmetic and geometry, London Math. Soc. Lecture Note Ser., 420, Cambridge Univ. Press, Cambridge, 2015, 436–457 | DOI | MR | Zbl
[3] A. N. Parshin, “Higher Bruhat–Tits buildings and vector bundles on an algebraic surface”, Algebra and number theory (Essen, 1992), de Gruyter, Berlin, 1994, 165–192 ; Preprint, Institut für Experimentelle Mathematik, Essen, 1993, 34 pp. | MR | Zbl
[4] J.-P. Serre, Trees, Transl. from the French, Springer-Verlag, Berlin–New York, 1980, ix+142 pp. | MR | Zbl
[5] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977, xvi+496 pp. | MR | MR | Zbl | Zbl
[6] Ch. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, Progr. Math., 3, Birkhäuser, Boston, Mass., 1980, vii+389 pp. | MR | MR | Zbl
[7] A. Grothendieck, “Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes”, Inst. Hautes Études Sci. Publ. Math., 8:1 (1961), 5–205 | DOI | MR | Zbl
[8] G. Horrocks, “Projective modules over an extension of a local ring”, Proc. London Math. Soc. (3), 14:4 (1964), 714–718 | DOI | MR | Zbl
[9] B. L. van der Varden, Algebra, Mir, M., 1976, 648 pp. ; B. L. van der Waerden, Algebra, v. I, Heidelberger Taschenbücher, 12, 8. Aufl., Springer-Verlag, Berlin–New York, 1971, ix+272 pp. ; v. II, Heidelberger Taschenbücher, 23, 5. Aufl., 1967, x+300 pp. | MR | Zbl | Zbl | MR | Zbl
[10] C. S. Seshadri, “Triviality of vector bundles over the affine space $K^2$”, Proc. Nat. Acad. Sci. U.S.A., 44 (1958), 456–458 | DOI | MR | Zbl
[11] D. Quillen, “Projective modules over polynomial rings”, Invent. Math., 36 (1976), 167–171 | DOI | MR | Zbl
[12] A. A. Suslin, “Projective modules over a polynomial ring are free”, Soviet Math. Dokl., 17:4 (1976), 1160–1164 | MR | Zbl
[13] A. L. Smirnov, “Vektornye rassloeniya na $\mathbf P^1_\mathbb Z$ s prostymi podskokami”, Voprosy teorii predstavlenii algebr i grupp. 30, Zap. nauch. sem. POMI, 452, POMI, SPb., 2016, 202–217