An asymptotic method for homogenization for generalized Beltrami operators
Sbornik. Mathematics, Tome 208 (2017) no. 4, pp. 546-567
Voir la notice de l'article provenant de la source Math-Net.Ru
Questions on the homogenization of the Riemann-Hilbert problem for the generalized Beltrami equation with rapidly oscillating periodic coefficients (with small period $\varepsilon$) are considered. Estimates of order $\sqrt\varepsilon$ are obtained for the homogenization error in Lebesgue and Sobolev spaces. Asymptotic methods of homogenization are used.
Bibliography: 16 titles.
Keywords:
Beltrami's equation, homogenization, asymptotic methods.
@article{SM_2017_208_4_a4,
author = {M. M. Sirazhudinov},
title = {An asymptotic method for homogenization for generalized {Beltrami} operators},
journal = {Sbornik. Mathematics},
pages = {546--567},
publisher = {mathdoc},
volume = {208},
number = {4},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_4_a4/}
}
M. M. Sirazhudinov. An asymptotic method for homogenization for generalized Beltrami operators. Sbornik. Mathematics, Tome 208 (2017) no. 4, pp. 546-567. http://geodesic.mathdoc.fr/item/SM_2017_208_4_a4/