An asymptotic method for homogenization for generalized Beltrami operators
Sbornik. Mathematics, Tome 208 (2017) no. 4, pp. 546-567

Voir la notice de l'article provenant de la source Math-Net.Ru

Questions on the homogenization of the Riemann-Hilbert problem for the generalized Beltrami equation with rapidly oscillating periodic coefficients (with small period $\varepsilon$) are considered. Estimates of order $\sqrt\varepsilon$ are obtained for the homogenization error in Lebesgue and Sobolev spaces. Asymptotic methods of homogenization are used. Bibliography: 16 titles.
Keywords: Beltrami's equation, homogenization, asymptotic methods.
@article{SM_2017_208_4_a4,
     author = {M. M. Sirazhudinov},
     title = {An asymptotic method for homogenization for generalized {Beltrami} operators},
     journal = {Sbornik. Mathematics},
     pages = {546--567},
     publisher = {mathdoc},
     volume = {208},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_4_a4/}
}
TY  - JOUR
AU  - M. M. Sirazhudinov
TI  - An asymptotic method for homogenization for generalized Beltrami operators
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 546
EP  - 567
VL  - 208
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_4_a4/
LA  - en
ID  - SM_2017_208_4_a4
ER  - 
%0 Journal Article
%A M. M. Sirazhudinov
%T An asymptotic method for homogenization for generalized Beltrami operators
%J Sbornik. Mathematics
%D 2017
%P 546-567
%V 208
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_4_a4/
%G en
%F SM_2017_208_4_a4
M. M. Sirazhudinov. An asymptotic method for homogenization for generalized Beltrami operators. Sbornik. Mathematics, Tome 208 (2017) no. 4, pp. 546-567. http://geodesic.mathdoc.fr/item/SM_2017_208_4_a4/