Mots-clés : rotation
@article{SM_2017_208_4_a2,
author = {G. G. Oniani and K. A. Chubinidze},
title = {Rotation of coordinate system and differentiation of integrals with respect to translation-invariant bases},
journal = {Sbornik. Mathematics},
pages = {510--530},
year = {2017},
volume = {208},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_4_a2/}
}
TY - JOUR AU - G. G. Oniani AU - K. A. Chubinidze TI - Rotation of coordinate system and differentiation of integrals with respect to translation-invariant bases JO - Sbornik. Mathematics PY - 2017 SP - 510 EP - 530 VL - 208 IS - 4 UR - http://geodesic.mathdoc.fr/item/SM_2017_208_4_a2/ LA - en ID - SM_2017_208_4_a2 ER -
G. G. Oniani; K. A. Chubinidze. Rotation of coordinate system and differentiation of integrals with respect to translation-invariant bases. Sbornik. Mathematics, Tome 208 (2017) no. 4, pp. 510-530. http://geodesic.mathdoc.fr/item/SM_2017_208_4_a2/
[1] M. de Guzmán, Differentiation of integrals in $\mathbb{R}^n$, Lecture Notes in Math., 481, Springer-Verlag, Berlin–New York, 1975, xii+266 pp. | DOI | MR | MR | Zbl
[2] J. Marstrand, “A counter-example in the theory of strong differentiation”, Bull. London Math. Soc., 9:2 (1977), 209–211 | DOI | MR | Zbl
[3] Y. El Helou, Recouvrement du tore $T^d$ par des ouverts alétoires et dimension de Hausdorff de l'ensemble non recouvert, Publ. Math. d'Orsay, 78-9, Univ. de Paris-Sud, Orsay, 1978, iii+24 pp. | MR | Zbl
[4] B. López Melero, “A negative result in differentiation theory”, Studia Math., 72:2 (1982), 173–182 | MR | Zbl
[5] A. M. Stokolos, “An inequality for equimeasurable rearrangements and its application in the theory of differentiation of integrals”, Anal. Math., 9:2 (1983), 133–146 | DOI | MR | Zbl
[6] G. G. Oniani, Differentsirovanie integralov Lebega, Izd-vo Tbilisskogo un-ta, Tbilisi, 1998, 189 pp.
[7] G. G. Oniani, “A resonance theorem for a family of translation invariant differentiation bases”, Proc. A. Razmadze Math. Inst., 168 (2015), 99–116 | MR | Zbl
[8] G. Lepsveridze, “On strong differentiability of integrals along different directions”, Georgian Math. J., 2:6 (1995), 613–630 | DOI | MR | Zbl
[9] G. G. Oniani, “On the differentiability of integrals with respect to the bases $B_2(\theta)$”, East J. Approx., 3:3 (1997), 275–302 | MR | Zbl
[10] A. M. Stokolos, “On a problem of Zygmund”, Math. Notes, 64:5 (1998), 646–657 | DOI | DOI | MR | Zbl
[11] O. S. Dragoshanskii, “Convergence of Fourier double series and Fourier integrals of functions on $T^2$ and $\mathbb R^2$ after rotations of coordinates”, Sb. Math., 191:11 (2000), 1587–1606 | DOI | DOI | MR | Zbl
[12] G. A. Karagulyan, “A complete characterization of $R$-sets in the theory of differentiation of integrals”, Studia Math., 181:1 (2007), 17–32 | DOI | MR | Zbl
[13] G. G. Oniani, “On the strong differentiation of multiple integrals along different frames”, Georgian Math. J., 12:2 (2005), 349–368 | MR | Zbl
[14] M. I. D'yachenko, “The rotation of a coordinate system and two-dimensional classes of functions of generalized bounded variation”, Moscow Univ. Math. Bull., 63:3 (2008), 107–110 | DOI | MR | Zbl
[15] K. Chubinidze, G. Oniani, “Rotation of coordinate axes and differentiation of integrals with respect to translation invariant bases”, Proc. A. Razmadze Math. Inst., 167 (2015), 107–112 | MR | Zbl
[16] G. Oniani, “On the integrability of strong maximal functions corresponding to different frames”, Georgian Math. J., 6:2 (1999), 149–168 | DOI | MR | Zbl
[17] A. M. Stokolos, “On the differentiation of integrals of functions from $L\varphi(L)$”, Studia Math., 88:2 (1988), 103–120 | MR | Zbl
[18] A. Stokolos, “Zygmund's program: some partial solutions”, Ann. Inst. Fourier (Grenoble), 55:5 (2005), 1439–1453 | DOI | MR | Zbl
[19] G. Oniani, T. Zerekidze, “On differential bases formed of intervals”, Georgian Math. J., 4:1 (1997), 81–100 | DOI | MR | Zbl