Rotation of coordinate system and differentiation of integrals with respect to translation-invariant bases
Sbornik. Mathematics, Tome 208 (2017) no. 4, pp. 510-530 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the dependence of differential properties of the indefinite integral on the rotation of the coordinate system (that is, on the transformation (of the variables) that is a rotation about the origin); in particular, we study Zygmund's problem concerning the possibility of correcting an arbitrary integrable function using a rotation to achieve the differentiability of its integral for general differential bases, and also the problem of invariance for the differentiability property of the integral with respect to rotations. The results obtained in the paper imply negative solutions of the above questions for bases of rather general form. Bibliography: 19 titles.
Keywords: differentiation basis, translation-invariant basis, integral, coordinate system.
Mots-clés : rotation
@article{SM_2017_208_4_a2,
     author = {G. G. Oniani and K. A. Chubinidze},
     title = {Rotation of coordinate system and differentiation of integrals with respect to translation-invariant bases},
     journal = {Sbornik. Mathematics},
     pages = {510--530},
     year = {2017},
     volume = {208},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_4_a2/}
}
TY  - JOUR
AU  - G. G. Oniani
AU  - K. A. Chubinidze
TI  - Rotation of coordinate system and differentiation of integrals with respect to translation-invariant bases
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 510
EP  - 530
VL  - 208
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_4_a2/
LA  - en
ID  - SM_2017_208_4_a2
ER  - 
%0 Journal Article
%A G. G. Oniani
%A K. A. Chubinidze
%T Rotation of coordinate system and differentiation of integrals with respect to translation-invariant bases
%J Sbornik. Mathematics
%D 2017
%P 510-530
%V 208
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2017_208_4_a2/
%G en
%F SM_2017_208_4_a2
G. G. Oniani; K. A. Chubinidze. Rotation of coordinate system and differentiation of integrals with respect to translation-invariant bases. Sbornik. Mathematics, Tome 208 (2017) no. 4, pp. 510-530. http://geodesic.mathdoc.fr/item/SM_2017_208_4_a2/

[1] M. de Guzmán, Differentiation of integrals in $\mathbb{R}^n$, Lecture Notes in Math., 481, Springer-Verlag, Berlin–New York, 1975, xii+266 pp. | DOI | MR | MR | Zbl

[2] J. Marstrand, “A counter-example in the theory of strong differentiation”, Bull. London Math. Soc., 9:2 (1977), 209–211 | DOI | MR | Zbl

[3] Y. El Helou, Recouvrement du tore $T^d$ par des ouverts alétoires et dimension de Hausdorff de l'ensemble non recouvert, Publ. Math. d'Orsay, 78-9, Univ. de Paris-Sud, Orsay, 1978, iii+24 pp. | MR | Zbl

[4] B. López Melero, “A negative result in differentiation theory”, Studia Math., 72:2 (1982), 173–182 | MR | Zbl

[5] A. M. Stokolos, “An inequality for equimeasurable rearrangements and its application in the theory of differentiation of integrals”, Anal. Math., 9:2 (1983), 133–146 | DOI | MR | Zbl

[6] G. G. Oniani, Differentsirovanie integralov Lebega, Izd-vo Tbilisskogo un-ta, Tbilisi, 1998, 189 pp.

[7] G. G. Oniani, “A resonance theorem for a family of translation invariant differentiation bases”, Proc. A. Razmadze Math. Inst., 168 (2015), 99–116 | MR | Zbl

[8] G. Lepsveridze, “On strong differentiability of integrals along different directions”, Georgian Math. J., 2:6 (1995), 613–630 | DOI | MR | Zbl

[9] G. G. Oniani, “On the differentiability of integrals with respect to the bases $B_2(\theta)$”, East J. Approx., 3:3 (1997), 275–302 | MR | Zbl

[10] A. M. Stokolos, “On a problem of Zygmund”, Math. Notes, 64:5 (1998), 646–657 | DOI | DOI | MR | Zbl

[11] O. S. Dragoshanskii, “Convergence of Fourier double series and Fourier integrals of functions on $T^2$ and $\mathbb R^2$ after rotations of coordinates”, Sb. Math., 191:11 (2000), 1587–1606 | DOI | DOI | MR | Zbl

[12] G. A. Karagulyan, “A complete characterization of $R$-sets in the theory of differentiation of integrals”, Studia Math., 181:1 (2007), 17–32 | DOI | MR | Zbl

[13] G. G. Oniani, “On the strong differentiation of multiple integrals along different frames”, Georgian Math. J., 12:2 (2005), 349–368 | MR | Zbl

[14] M. I. D'yachenko, “The rotation of a coordinate system and two-dimensional classes of functions of generalized bounded variation”, Moscow Univ. Math. Bull., 63:3 (2008), 107–110 | DOI | MR | Zbl

[15] K. Chubinidze, G. Oniani, “Rotation of coordinate axes and differentiation of integrals with respect to translation invariant bases”, Proc. A. Razmadze Math. Inst., 167 (2015), 107–112 | MR | Zbl

[16] G. Oniani, “On the integrability of strong maximal functions corresponding to different frames”, Georgian Math. J., 6:2 (1999), 149–168 | DOI | MR | Zbl

[17] A. M. Stokolos, “On the differentiation of integrals of functions from $L\varphi(L)$”, Studia Math., 88:2 (1988), 103–120 | MR | Zbl

[18] A. Stokolos, “Zygmund's program: some partial solutions”, Ann. Inst. Fourier (Grenoble), 55:5 (2005), 1439–1453 | DOI | MR | Zbl

[19] G. Oniani, T. Zerekidze, “On differential bases formed of intervals”, Georgian Math. J., 4:1 (1997), 81–100 | DOI | MR | Zbl